دوره 11، شماره 3 - ( 6-1400 )                   جلد 11 شماره 3 صفحات 3565-3547 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kakaee A, Ahmadkhah A. Numerical investigation of texture density in micro-grooved parallel slider bearing. ASE 2021; 11 (3) :3547-3565
URL: http://www.iust.ac.ir/ijae/article-1-531-fa.html
Numerical investigation of texture density in micro-grooved parallel slider bearing. Automotive Science and Engineering. 1400; 11 (3) :3547-3565

URL: http://www.iust.ac.ir/ijae/article-1-531-fa.html


چکیده:   (5263 مشاهده)
Surface texturing modifications improve the tribological performance parameters. In parallel slider bearings with a micro-grooved textured surface, the effects of the Reynolds number and the texture aspect ratio at constant texture density have been studied; however, the texture density variation's effects on the tribological performance have not been investigated yet. The focus of this study is on the texture density variation in micro-grooved parallel slider bearings. The numerical analysis approach was utilized to perform a more in-depth understanding of texture density variation on the two-dimensional pressure distribution, skin friction coefficient, and recirculation zones in micro-grooves and the objective of flow functions such as load-carrying capacity and friction coefficient. In order to validate using the current CFD model for analyzing hydrodynamic bearings, a comparison with the published theoretical paper results was presented. The results were in good agreement with the published theoretical predictions. In a variety of aspect ratios, the texture densities led to an upgrade tribological performance. Results showed remarkable improvements in frictional response with texture density, and an optimal texture density exists. Finally, it was observed that the optimal micro-grooves texture density depends on the texture aspect ratio, while it is independent of the sliding velocity.
متن کامل [PDF 1925 kb]   (4980 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: موتور احتراق داخلی

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb