دوره 9، شماره 3 - ( 6-1398 )                   جلد 9 شماره 3 صفحات 3044-3033 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zohoorian Yazdi M, Soryani M. Driver Drowsiness Detection by Identification of Yawning and Eye Closure. ASE 2019; 9 (3) :3033-3044
URL: http://www.iust.ac.ir/ijae/article-1-509-fa.html
Driver Drowsiness Detection by Identification of Yawning and Eye Closure. Automotive Science and Engineering. 1398; 9 (3) :3033-3044

URL: http://www.iust.ac.ir/ijae/article-1-509-fa.html


چکیده:   (16570 مشاهده)
Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth information, the mouth area and its state are identified. Then using CNN networks, to predict whether the eyes are open or closed, a semi-VGG architecture is used .The results of yawning and eyes states detection are integrated to decide whether an alarm should be issued. The results show an accuracy of about 90% which is encouraging.
متن کامل [PDF 1192 kb]   (4894 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: خودروهای خودران

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb