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Ensuring that ethically sound decisions are made under complex, real-world
conditions is a central challenge in deploying autonomous vehicles (AVs).
This paper introduces a human-centric risk mitigation framework using Deep
Q-Networks (DQNSs) and a specially designed reward function to minimize
the likelihood of fatal injuries, passenger harm, and vehicle damage. The
approach uses a comprehensive state representation that captures the AV’s
dynamics and its surroundings (including the identification of vulnerable road
users), and it explicitly prioritizes human safety in the decision-making
process. The proposed DQN policy is evaluated in the CARLA simulator
across three ethically challenging scenarios: a malfunctioning traffic signal, a
cyclist’s sudden swerve, and a child running into the street. In these scenarios,
the DQN-based policy consistently minimizes severe outcomes and
prioritizes the protection of wvulnerable road users, outperforming a
conventional collision-avoidance strategy in terms of safety. These findings
demonstrate the feasibility of deep reinforcement learning for ethically
aligned decision-making in AVs and point toward a pathway for developing
safer and more socially responsible autonomous transportation systems.

1. Introduction

collision-avoidance  algorithms  guarantee

A significant transformation of contemporary
transportation systems is expected to be driven by
autonomous vehicles (AVs), which offer
enhanced safety, efficiency, and accessibility [1-
3]. However, an exponential increase in the need
to ensure ethically sound decision-making has
been observed as these systems transition from
controlled testing grounds to public roads [4].
Traditional rule-based or machine learning
approaches often focus on optimizing technical
objectives such as fuel efficiency or travel time,
under the implicit assumption that standard
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sufficient safety [5, 6]. Nevertheless, recent high-
profile incidents and regulatory pressures have
highlighted the importance of explicitly
addressing ethical trade-offs, particularly in high-
risk scenarios where human life and well-being
are at stake [7].

Within the broader field of automated driving
research, theoretical scenarios (e.g., variations of
the “trolley problem™) have largely guided
investigations into AV ethics [8]. Although such
scenarios capture moral complexity, few practical
computational methods have been proposed to
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operationalize ethical principles in real-time
control policies [9]. Reinforcement learning (RL)
methods, especially DQNSs, have been applied
with some success to manage the complexity of
dynamic driving environments [10]. However, a
reliance on reward functions that emphasize
technical metrics, such as maximizing driving
comfort or minimizing average collision
frequency, is frequently observed, and the
balancing of potential harm to different human
stakeholders is often neglected [11].

In this paper, a human-centric risk mitigation
framework is proposed, in which DQNs are
leveraged to support ethically informed decision-
making in AVs. By incorporating a
comprehensive state space—encompassing both
the ego vehicle’s kinematic information and the
relative positions, velocities, and classifications
of nearby objects—situational awareness is
reinforced within the decision process. A
carefully crafted reward function is also
introduced to minimize fatal injury probabilities,
passenger risk, and vehicular damage, thereby
placing human safety at the forefront. To evaluate
the effectiveness of the framework, ethically
charged scenarios are constructed within the
CARLA simulator [12], including
malfunctioning traffic signals, sudden cyclist
swerves, and the unpredictable entry of a child
into the street. Through these evaluations, it is
demonstrated that a DQN-based strategy can
successfully navigate  complex  traffic
environments while aligning decisions with
human-centric ethical principles.

2. Related Work

Research on ethical decision-making in
autonomous  vehicles (AVS) has been
increasingly highlighted due to the complexity
involved in translating moral principles into
computational models [8]. The literature has
primarily ~ focused on defining ethical
frameworks, examining various forms of risk,
and investigating artificial intelligence (Al)
methods—particularly reinforcement learning
(RL)—that can operationalize these frameworks
in real-time driving contexts. In this section, key
strands of the existing research are reviewed to
showcase current challenges and proposed
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solutions within ethically guided AV decision-
making.

In early investigations, moral dilemmas such as
the “trolley problem”—which require choosing
between multiple harmful outcomes—were used
to illustrate the ethical conundrums faced by
autonomous vehicles (AVs). The trolley problem
remains a central thought experiment in
evaluating moral decision-making for AVs, as it
highlights the complexity of choosing between
outcomes such as sacrificing passengers or
pedestrians [13]. Studies have shown that human
participants tend to favor utilitarian approaches in
these dilemmas, opting to minimize overall harm,
which has implications for algorithmic designs
[14].

Attempts to apply traditional ethical theories
(e.g., utilitarianism, deontological ethics) in real-
world driving scenarios have encountered
considerable challenges, largely stemming from
the precise quantification of harm and benefit.
Utilitarian algorithms, while logically consistent,
face resistance from the public due to concerns
over self-sacrifice, as studies suggest a preference
for hybrid approaches that balance individual
safety with harm minimization [15].

Although algorithmic implementations that
guantify these ethical trade-offs have been
proposed, it has been noted that most of these
solutions remain theoretical or highly simplified,
making real-world application difficult. A role-
based approach has been suggested as a practical
alternative, integrating regulatory frameworks
with deontological rights-based ethics for
explainability and compliance [16]. However,
critics argue that the "trolley problem™ may not
always capture the nuances of real-world traffic
scenarios and suggest focusing on everyday
ethical challenges faced by AVs instead [17].

The modeling of ethics within AV control
algorithms has often been achieved through fixed
rules, which are manually encoded to prioritize
certain types of harm reduction (e.g., protecting
pedestrians over passengers). However, such
rule-based approaches have been identified as
vulnerable to oversight, particularly in nuanced
and evolving traffic contexts. Consequently, a
shift toward data-driven methods has been
observed, as learning-based models display


http://dx.doi.org/10.22068/ase.2025.697
https://ijae.iust.ac.ir/article-1-697-en.html

[ Downloaded from ijae.iust.ac.ir on 2026-02-17 ]

[ DOI: 10.22068/ase.2025.697 ]

promise for increased adaptability and scalability.
Reinforcement  learning (RL) techniques,
particularly deep reinforcement learning, have
emerged as robust tools for creating dynamic
decision-making frameworks in AVs. These
approaches leverage real-world data and
simulation environments to train policies that
generalize across diverse driving scenarios. For
example, a study demonstrated the effectiveness
of deep deterministic policy gradient (DDPG) in
replicating human-like driving behaviors by
learning from extensive datasets [18].

Traditional approaches in autonomous vehicle
(AV) research have typically represented risk
through metrics such as collision rates, time-to-
collision, and impact severity. These metrics
effectively address technical safety requirements
and are widely used in collision-avoidance
systems to quantify immediate risks and predict
hazardous scenarios [19]. However, they
frequently prove insufficient when higher-level
ethical concerns arise, such as distinguishing
between the risks posed to different road users or
weighing vehicle damage against the potential for
harm to human occupants. For instance, the
integration of ethical frameworks into collision-
avoidance algorithms remains a challenge,
particularly in scenarios requiring prioritization
among conflicting stakeholders [20]. Recent
studies have incorporated the probability of
human  injury into  collision-avoidance
algorithms, reinforcing the need to consider
collision severity and the likelihood of serious
harm within real-time decision-making. For
example, a model combining predictive
occupancy maps and trajectory optimization has
been shown to successfully minimize collision
risks while considering injury severity [21].
Another study developed a real-time decision-
making system leveraging fuzzy logic to predict
injury outcomes, ensuring ethical compliance in
AV crash scenarios [22]. These advancements
demonstrate a growing focus on ethically guided
collision-avoidance algorithms that move beyond
traditional technical metrics to incorporate
human-centered considerations.

Despite such progress, alignment with broader
societal expectations for autonomous vehicle
(AV) behavior has not always been achieved,
particularly in scenarios where legal and ethical
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responsibilities converge. This tension arises
from the complexities involved in balancing
ethical and legal obligations, as highlighted by
the challenges of designing decision-making
frameworks that respect diverse societal norms
[23].

The interplay among passenger safety,
pedestrian protection, and property damage
complicates the formulation of straightforward
reward or utility functions. Research
demonstrates that traditional algorithms often fail
to adequately account for the ethical trade-offs
required in such scenarios, particularly when the
safety of vulnerable road users (VRUS) is at stake
[24]. Ethical decision-making algorithms
incorporating factors like wvulnerability risk
adjustments have shown a reduction in
cumulative harm by over 90% in simulation
scenarios.

As a result, it has been suggested that more
holistic considerations of risk—incorporating
context-specific probabilities of fatal or severe
injuries—should guide decision-making
algorithms to ensure a balanced treatment of
competing interests. For example, approaches
such as Lexicographic Optimization-based
Model Predictive Control (LO-MPC) prioritize
ethical constraints to ensure fair decision-making
in high-stakes scenarios [25]. Similarly,
maximum acceptable risk thresholds have been
proposed to integrate socially acceptable risk
levels into trajectory planning, resulting in safer,
more transparent decision-making processes
[26].

Reinforcement learning (RL) has drawn
increasing interest as a solution for handling
sequential decision-making challenges in high-
dimensional driving environments. Initial studies
employing Q-learning and policy gradient
methods yielded promising outcomes in tasks
such as lane-keeping and overtaking maneuvers
[27]. Techniques like Deep Q-Networks (DQNSs)
have been particularly effective in optimizing
highway decision-making tasks, demonstrating
the potential for RL in autonomous driving
applications [10].

However, it has been observed that ethical
constraints are not often included in these RL-
based approaches. Existing methods primarily
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focus on maximizing reward functions centered
around technical objectives, such as driving
comfort or collision avoidance, without
adequately addressing broader societal or moral
imperatives [11]. Recent research has proposed
integrating safety constraints into RL models
through frameworks like constrained Markov
Decision Processes (CMDPs), which incorporate
ethical and safety boundaries directly into the
policy optimization process [28]. Moreover,
constrained adversarial RL approaches have been
introduced to enhance robustness in decision-
making  under uncertainties, such as
unpredictable traffic scenarios or measurement
errors. These methods help ensure that policies
remain aligned with ethical considerations, even
in adversarial conditions [29].

Purely reward-driven policies risk producing
ethically questionable behaviors if the reward
structure fails to capture broader societal values,
underscoring the necessity of designing RL
models that balance technical performance with
moral accountability [30]. Future work must
continue to emphasize the integration of ethical
constraints and multi-objective optimization to
ensure both safety and fairness in AV decision-
making systems.

A surge of studies has examined deep
reinforcement learning in scenarios ranging from
highway driving to intersection management.
Nonetheless, these works have frequently
emphasized collision avoidance and traffic
efficiency rather than explicitly addressing
ethical priorities. Hierarchical approaches
combining DRL with dynamic modeling
frameworks have also emerged to tackle complex
multi-step tasks, such as intersection coordination
[31, 32]. More recent frameworks, such as
Cognition-Aided  Reinforcement  Learning
(CARL), attempt to embed ethical reasoning by
incorporating cognitive principles like attention
and memory into the decision-making process
[33]. While DRL holds immense potential,
addressing its ethical shortcomings requires
refining reward functions to include harm
minimization and moral trade-offs, alongside
technical performance.

Although DQNSs have exhibited the ability to
learn intricate control policies, issues arise when
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attempting to align their outputs with established
moral or ethical standards. In some instances,
networks trained solely to minimize collisions
have opted for maneuvers that inadvertently
expose particular road users to heightened risks
[34]. This limitation has fueled efforts to explore
reward designs that embed ethical considerations.
Some recent research has augmented scalar
reward functions with human-centric factors,
encouraging the minimization of harm to
vulnerable road users such as pedestrians and
cyclists. For example, innovative reward
functions have been developed to integrate safety
margins and compliance with traffic rules,
resulting in safer and more socially acceptable
behaviors [35]. Additional studies have proposed
probabilistic models of injury or fatality within
the reward structure, thereby establishing a
clearer link between observed results and ethical
goals [7, 36].

Another obstacle has been the task of balancing
ethical imperatives with practical driving
requirements. Overly stringent reward functions
that place a strong emphasis on ethical constraints
may produce overly cautious vehicle behaviors,
impairing traffic flow or inadvertently raising
risks to other road users. For example, reward
systems designed to ensure complete adherence
to safety principles can lead to AV behaviors that
disrupt traffic patterns, especially in high-density
scenarios [37]. Conversely, if ethical concerns are
weighed too lightly, the resulting policies might
optimize for efficiency at the expense of societal
expectations regarding AV accountability.
Consequently, multi-objective reward
frameworks have been developed, in which ethics
and other performance metrics (e.g., speed, traffic
compliance) are optimized jointly [38-41].

Despite noteworthy progress in defining ethical
considerations for AV decision-making and in
advancing RL frameworks, important gaps
remain. Real-world validation of ethically guided
RL policies has been limited by resource
constraints and regulatory impediments [42].
Moreover, the debate on how to quantify ethical
trade-offs continues without a clear consensus.
Scholars have explored various approaches, such
as encoding explicit moral principles into RL
reward functions, but challenges persist in
operationalizing abstract concepts like fairness or
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harm minimization in a mathematically tractable
way [43]. Although DQNs and other deep RL
algorithms demonstrate considerable strength in
learning from complex environments, the
formulation of reward functions that accurately
reflect societal, legal, and moral standards
remains a pressing challenge [44, 45].

In summary, existing literature provides a
valuable foundation for understanding how
ethical frameworks can be conceptualized and
integrated into computational models, and it
illustrates how deep reinforcement learning can
be harnessed for intricate driving tasks.
Nevertheless, the intersection of ethics, safety,
and operational performance in AVs remains a
vibrant and evolving research frontier. The
present study aims to extend this discourse by
introducing a DQN-based approach that includes
a clearly defined human-centric reward function
incorporating probabilities of fatal injuries,
passenger risk, and vehicle damage. By
addressing multiple harm factors in real-time AV
decision-making, this framework pursues the
mitigation of various risks to human life and well-
being within the vehicle’s control policy.

3. Methodology

In this section, the proposed approach for
incorporating ethical principles into autonomous
vehicle decision-making using deep
reinforcement learning is presented. An overview
of the framework architecture is provided,
followed by details of the state and action spaces,
the design of the reward function, and the training
procedure. These elements illustrate how an
ethically informed control policy can be learned
and implemented in an AV.

3.1. Framework Architecture

A deep reinforcement learning framework was
created to produce real-time control decisions for
the AV in ethically challenging scenarios. Figure
1 illustrates the flow of sensor data from the
simulation environment into the DQN agent,
showing how raw inputs are processed and
encoded into a high-dimensional state
representation which is then passed to a deep
neural network that approximate the optimal
action-value function Q(s, a).

Vakili et al.
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Figure 1: Neural network architecture used for ethical
decision-making in autonomous vehicles, processing
inputs from the ego vehicle, surrounding objects, and
traffic signals to generate actions.

Sensor readings—such as the ego vehicle’s
speed, orientation, and the positions of nearby
obstacle—were gathered from the CARLA
simulator’s API at each time step. These readings
were normalized and merged into a standardized
state vector for input to the network. A multi-
layered neural network with fully connected
layers was used to estimate Q-values for discrete
driving actions. During training, an epsilon-
greedy policy was applied during training to
encourage exploration of different actions. As
training progressed and the agent’s performance
converged, the policy was shifted to a greedy
strategy that selects the action with the highest
learned Q-value at each step, with the intention of
minimizing ethically adverse outcomes. This
framework enabled the agent to learn how to
balance safety considerations against other
driving objectives through direct interaction with
the simulated environment.

3.2. State and Action Space

To ensure that ethically relevant factors are
considered by the DQN agent, a comprehensive
set of variables was included in the state
representation. Each component of the state
vector was carefully chosen to provide sufficient
context for nuanced decision-making by the
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network. The wvehicle’s position, velocity,
acceleration, and heading angle describe its
motion and orientation in the environment. For
each detected object in the vicinity (e.g., another
vehicle, cyclist, or pedestrian), the state includes
the object’s relative distance to the ego vehicle,
relative velocity, and object type. By classifying
nearby objects by type, the agent can recognize
differing vulnerability levels (for example, a
pedestrian is more vulnerable than another
vehicle) and factor these distinctions into its
decisions. Information about traffic signals and
road layouts was also integrated whenever
available. In cases of malfunctioning signals or
other irregular traffic control conditions, a flag
indicating the unreliability of standard traffic
rules was added to the state vector to alert the
agent to the need for ethical trade-offs. All of
these features were concatenated and normalized
to form the final state vector, which was
subsequently normalized to maintain numerical
stability during training.

A discrete action space was defined to
represent the key maneuver options available to
the autonomous vehicle. This set of actions
encompasses the primary longitudinal and lateral
control commands needed for emergency
responses and ethical decision-making. Table 1
enumerates the nine possible actions, including
doing nothing (coasting), braking, accelerating,
and combined steering with braking or
acceleration to the left or right. A maximum
steering angle was imposed in these actions to
prevent destabilizing  maneuvers.  While
discretizing the control inputs reduces the
granularity of possible actions, it captures the
essential decisions pertinent to critical scenarios,
ensuring that the agent’s choices cover the
maneuvers most relevant to safety and ethical
considerations.

3.3. Reward Function

A multi-objective reward function was crafted
to embed human-centric risk mitigation
principles into the agent’s learning process. After
appropriate normalization and weighting, the
following terms were combined into a single
scalar reward Rt at each time step:
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Table 1: Action space of the agent in the simulation
environment.

Action
Index [brake, steer, Definition
throttle]
1 [0,0, 0] No Action
2 [1,0,0] Braking
3 [0,0, 1] Accelerating
4 [0, -1, 0] Turning left
Turning left and
5 [0.-1,1] accelerating
Turning left and
6 [1,-1,0] braking
7 [0, 1, 0] Turning right
Turning right and
8 [0.1,1] accelerating
9 [1,1,0] Turning right and

braking

1. Injury Probability Minimization: A
substantial penalty is applied whenever a
collision occurs that carries a significant risk of
fatal or severe injuries. This probability was
estimated using a function of collision speed, and
the vulnerability level of the object involved (e.g.,
more severe penalties for collisions with
pedestrians or cyclists) which was derived from
[46].

2. Passenger Risk Reduction:  Sharp
accelerations, harsh braking, and extreme
steering angles were penalized to discourage
aggressive maneuvers likely to endanger
passengers.

3. Damage Mitigation: Collisions that resulted
in vehicle damage incurred incremental penalties
proportional to the damage severity, which was
approximated based on collision speed and angle.

4. Driving Efficiency: A minor positive reward
component was granted for making progress
along a designated route, ensuring that ethical
behavior did not become overly conservative.
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However, this component remained subordinate
to safety-related terms.

Mathematically, the total reward at time t was
expressed as:

R, =ao xR
where @, w,,0,,0, signify  weighting
coefficients. These values were empirically tuned
to strike a balance between ethical priorities and
operational viability, ensuring that harsh collision
penalties outweighed small incentives for
efficiency. This ensures that the agent will not

sacrifice safety for the sake of minor gains in
comfort or speed.

injun assenger lamage efficiency !
-J-y+a)z><Rp g + @, xR, g+a)4><Rff.. ,

3.4. Training Procedure

The DQN agent was trained using an
experience replay approach adapted for the multi-
objective reward described above. At the start of
training, the network weights were randomly
initialized and an empty replay buffer was
allocated. Throughout the initial training
episodes, an epsilon-greedy policy was used,
such that a random action was selected with
probability epsilon. This policy encouraged
exploration across diverse states and actions,
allowing the agent to collect a broad range of
experiences. At each simulation timestep, the
current state was observed, and an action was
chosen according to the epsilon-greedy policy.
Following the execution of that action, the
subsequent state and corresponding reward were
recorded. This tuple was then stored in the replay
buffer. At regular intervals, mini-batches of
experiences were sampled from the replay buffer.
The network parameters were updated by
minimizing the temporal difference error:

2
L(0)= E(%-w‘n‘sM%Replay[(rt +ym§XQ(SM,a';H’)—Q(st,at;e)) 1
where € denotes the main network parameters,

0" signifies the periodically updated target
network parameters, and y is the discount factor.
The target network was employed to stabilize
learning, and its weights were periodically
synchronized with the main network. This
approach mitigated non-stationarity issues and
facilitated more reliable convergence. The
learning rate, discount factor, and mini-batch size
were optimized through preliminary experiments
to balance convergence speed, training stability,
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and reward outcomes. The selection of the reward
weighting coefficients (o, ®,,®;,0,) Wwas

guided by domain expertise and iterative
experimentation  within  sample  scenarios.
Training continued until the moving average of
the cumulative episode reward ceased improving
over 500,000 timesteps.

By following the mentioned steps, a DQN
agent was trained to prioritize safety and mitigate
harm in ethically complex driving situations.
Through the explicit incorporation of risk
reduction objectives, the final learned policy was
designed to reflect a human-centric approach to
ethical  decision-making for  autonomous
vehicles.

4. Experimental Setup

In this section, the simulation environment and
implementation details used to train and evaluate
the DQN policy are described. All experiments
were carried out in the CARLA simulator, and
model training was performed with the Stable-
Baselines3 library in Python. The subsections
below outline the simulation platform, scenario
definitions, implementation specifics, and
evaluation metrics used in this study.

4.1. CARLA Simulation Environment

The CARLA open-source driving simulator
was chosen to provide a high-fidelity testbed for
autonomous vehicle (AV) control. This platform
supports realistic physics, customizable weather
conditions, and various road configurations with
dynamic traffic agents. For the purposes of this
research, a set of urban maps populated with
dense traffic and pedestrian interactions was
employed to approximate the complexity of real-
world driving. A virtual AV equipped with
simulated sensors (LiDAR, camera, radar) and a
high-level API for kinematic control was used.
Basic  sensor  data—including  positions,
velocities, and object classifications—were
retrieved from the simulator’s Python API at each
timestep. CARLA’s Python interface was utilized
to configure ethically challenging scenarios, such
as malfunctioning traffic signals and unexpected
pedestrian or cyclist actions. By leveraging this
setup, controlled experiments were enabled and
scenario execution was made reproducible, while
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still offering high realism and flexibility in
scenario design.

4.2. Scenario Definitions

Three critical scenarios were designed to test
the AV’s ability to make ethically guided
decisions in high-risk situations:

4.2.1. Malfunctioning Traffic Signal

In a scenario involving a malfunctioning traffic
signal, as shown in Figure 2, the ego vehicle
approached an intersection where the signals
were not functioning, increasing the risk of
collisions with cross-traffic. The objective was to
evaluate the system’s ability to identify and
execute the least harmful maneuver, prioritizing
the reduction of potential injuries even when
faced with suboptimal outcomes.

Figure 2: The first evaluation scenario;
malfunctioning traffic signal.

4.2.2. Cyclist’s Sudden Swerve

In a scenario involving a cyclist’s sudden
swerve, as depicted in Figure 3, the cyclist
abruptly veered into the ego vehicle’s lane,
leaving very limited reaction time. The objective
was to evaluate how quickly and effectively the
system could respond, with particular attention to
safeguarding vulnerable road users.

Figure 3: The second evaluation scenario; cyclist’s
sudden swerve.

4626 Automotive Science and Engineering (ASE)

4.2.3. Child Chasing a Ball

In a scenario involving a child chasing a ball,
as illustrated in Figure 4, a child (modeled as a
pedestrian) ran out from behind a parked vehicle
and directly into the ego vehicle’s path, requiring
a rapid response. The objective was to assess the
model’s capacity to swiftly adjust its trajectory or
speed, with a strong emphasis on pedestrian
safety.

Figure 4: The third scenario; child chasing a ball.

Each scenario was repeated multiple times, and
minor variations in initial conditions (e.g.,
starting positions and velocities) were introduced
to mitigate overfitting to specific configurations.

4.3. Implementation with Stable-Baselines3

The DQN framework was integrated with the
Stable-Baselines3 library in Python. A custom
gym-like environment was created to interface
with CARLA through Stable-Baselines3. The
state vector specified in Section 3.2 was extracted
from CARLA at each timestep, capturing ego
vehicle dynamics and details about surrounding
objects. Discrete steering and throttle/braking
commands (as discussed in Section 3.3) were
converted into CARLA-compatible control
inputs. A multi-layer perceptron comprising three
hidden layers of 256 units each (with ReLU
activation) was specified for the DQN. The Adam
optimizer [47] was applied, with a learning rate
of 5x10. A discount factor y=0.99 was selected
to consider future rewards while retaining
sensitivity to immediate safety risks. A replay
buffer of 100,000 transitions was employed to

store  (s,a,K,a,,) tuples. Random mini-

batches of 64 samples were drawn from the
replay buffer at scheduled intervals to update
network weights. The main network parameters
were synchronized with the target network every
1,000 update steps. The multi-objective reward
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outlined in Section 3.4 was applied as a weighted
combination of injury risk, passenger risk,
collision damage, and driving efficiency. Stable-
Baselines3’s standard DQN algorithm was
adapted to incorporate these domain-specific
reward signals at each timestep. An epsilon-
greedy strategy was adopted, initially setting
epsilon to 1.0 and gradually reducing it to 0.05
over 400,000 timesteps. Exploration was
prioritized in early phases, after which
exploitation of the learned policy became more
prominent.

Training was conducted on a workstation
equipped with an NVIDIA GPU (RTX 3070Ti),
Intel i5-13400 CPU, and 16 GB of RAM.
CARLA was operated in synchronous mode to
ensure determinism in the simulation and training
routines. Using this configuration, a DQN agent
was trained to navigate ethically charged driving
conditions while managing competing goals
involving safety, risk mitigation, and operational
efficiency.

4.4. Evaluation Metrics

Quantitative and qualitative measures were
gathered to comprehensively evaluate the
policy’s performance:

Collision Rate and Severity: The frequency of
collisions in each scenario run was documented.
The severity of collisions was gauged by collision
speed with an injury probability model, thereby
reflecting both the occurrence and the seriousness
of adverse events.

Comfort and Smoothness: The mean jerk (time
derivative of acceleration) and instances of abrupt
steering were tracked to appraise passenger
comfort and occupant safety.

Scenario Completion: The ability of the policy
to finish the specified route or task in each
scenario without deadlock or undue delay was
monitored to validate operational feasibility.

These metrics were assessed across various
random seeds and scenario variations, offering
statistical confidence in the policy’s performance.
In the subsequent section, the extent to which the
trained DQN prioritized ethical considerations
and mitigated harm is analyzed.

Vakili et al.

5. Results and Discussion

In this section, outcomes from the training
process are presented and analyzed, followed by
a discussion of their implications. First, the
convergence behavior of the DQN is examined,
and the policy’s performance is then assessed on
a scenario-by-scenario basis. Finally, we interpret
the ethical patterns in the agent’s behavior and
discuss the limitations of the current approach.

5.1. Training Performance
5.1.1 Convergence of the DQN Policy

A consistent upward trend in cumulative
episode rewards was recorded over the duration
of training, as indicated by a moving average of
timestep returns in Figure 5. Initially, the agent’s
behavior fluctuated between conservative
maneuvers (e.g., abrupt braking) and aggressive
actions (e.g., sudden acceleration). As training
proceeded, these oscillations were gradually
reduced, and a more stable policy emerged. The
epsilon-greedy exploration schedule influenced
learning dynamics; higher exploration rates
during the initial stages contributed to an elevated
collision frequency, whereas lower exploration
rates in later stages allowed the policy to become
more refined.

It was noted through qualitative observations
that the agent transitioned from reactive, short-
term decisions—focused primarily on immediate
collision avoidance—to more anticipatory
strategies that accounted for other road users’
trajectories. This progression was strongly linked
to the multi-objective reward function, where
steep penalties for collisions and injury risks
guided the policy toward safer maneuvers.

Average retum VS Training timesteps
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Figure 5: Average return in training episodes vs
timesteps.
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5.1.2. Stability and  Hyperparameter
Sensitivity

Training stability was supported by periodic
synchronization of the target network, which
reduced the likelihood of divergence.
Nonetheless, minor instabilities were observed
when hyperparameters such as the learning rate
or batch size were changed. In particular, a
discount factor set too low resulted in a strong
emphasis on immediate collision avoidance at the
expense of longer-term objectives. Conversely,
an excessively high discount factor occasionally
led to overly cautious driving behaviors in which
progress was substantially slowed, indicating an
exaggerated aversion to risk. These findings
underscore the importance of careful tuning to
balance safety considerations and operational
viability.

5.2. Scenario-Based Analysis

The DQN policy was evaluated in three
ethically challenging scenarios described in
Section 4.2: malfunctioning traffic signals, a
cyclist’s sudden swerve, and a child running into
the street. Multiple initial conditions were tested
for each scenario.

5.2.1. Malfunctioning Traffic Signal

When presented with a high-risk intersection
lacking functional signals, the agent consistently
chose to reduce speed and scan for cross-traffic
before proceeding. In situations where collisions
could not be avoided, maneuvers were performed
to minimize the likelihood of severe injury—
frequently leading to side impacts with other
vehicles rather than direct collisions with
vulnerable road users.

5.2.2. Cyclist’s Sudden Swerve

Upon detecting a cyclist swerving into its path,
the trained policy generally employed an evasive
steer-and-brake combination. Although
collisions were not prevented in every instance—
particularly when the cyclist’s behavior was
highly unpredictable—a lower impact velocity
was observed in collisions that did occur.
Compared to a purely efficiency-oriented policy,
this approach yielded fewer cyclist injuries and a
higher success rate in near-miss events. However,
in certain instances, the agent’s conservative
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tendencies became apparent: abrupt braking
maneuvers were occasionally executed, which
may elevate rear-end collision risks in dense
traffic.

5.2.3. Child Chasing a Ball

The scenario involving a child unexpectedly
running into the street posed the greatest
challenge, given the restricted reaction time and
high potential for harm. In most trials, the vehicle
drastically reduced speed and attempted evasive
steering. In unavoidable collisions, direct impact
velocity was minimized, resulting in lower
estimated injury probabilities. This outcome
contrasted with a baseline policy driven primarily
by route progress, which responded more slowly
and led to higher collision speeds. Nevertheless,
in a small fraction of trials where the system was
already committed to a maneuver (e.g., passing
another vehicle), rapid responses were hindered,
revealing the complexities inherent in real-time
ethical decision-making.

5.3. Interpretation and Limitations
5.3.1 Ethical Decision-Making Patterns

An integrated analysis of the outcomes across
scenarios indicates that the DQN agent learned to
distribute risk in accordance with the reward
function’s ethical weighting. High penalties for
injuring pedestrians or cyclists prompted the
policy to prioritize avoiding vulnerable road
users, even if doing so introduced greater risk to
the ego vehicle or other less vulnerable entities.
This behavior was especially evident in situations
like the intersection and the child scenario, where
the agent clearly favored outcomes that spared
pedestrians and  cyclists. The explicit
incorporation ~ of  ethical  considerations
(particularly the minimization of human injury
probability) shaped the agent’s behavior in ways
that conventional collision-avoidance strategies
would not normally capture. In effect, the learned
policy demonstrates greater sensitivity to
vulnerable individuals and tends to reduce
collision impact speeds, aligning its actions with
the intended ethical objectives. These findings
point to a promising direction for embedding
ethical norms into Al decision-making for AVs.
However, we must be cautious in interpreting this
as “solving” moral decision-making. The agent’s
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risk allocations, while aligned with its
programming, raise questions about how such
choices will be perceived outside the simulation.
Generalizing a simulation-trained policy’s ethical
judgments to real-world social scenarios should
be done carefully, as public acceptance may
depend on factors beyond what is captured in our
reward function.

5.3.2 Balancing Safety and Comfort

Because the reward function encompassed
multiple objectives, there were inherent trade-
offs in the agent’s decisions. One notable pattern
was the tension between preserving passenger
comfort and avoiding severe collisions. The agent
was penalized for very abrupt maneuvers to
encourage smooth driving under normal
conditions. We observed that under moderate,
non-emergency situations, the DQN indeed
behaved in a smoother manner (e.g., gradual
braking, gentle turns), reflecting a bias toward
passenger comfort. However, in critical moments
(such as the emergency scenarios described), the
agent decisively prioritized reducing injury risk
over maintaining comfort. This often meant
executing jarring maneuvers (like slamming the
brakes or sharply swerving) if that was necessary
to avoid or mitigate a crash. Such behavior aligns
with a human-centric safety perspective—most
human drivers would agree that preventing a fatal
accident is worth a hard brake that might jolt the
passengers. Nonetheless, this trade-off could be
further calibrated. In certain edge cases we noted,
an extreme evasive action by the AV (while
avoiding one harm) could potentially cause other
issues (like injuring the occupants via whiplash or
causing a secondary collision). Fine-tuning the
balance between these objectives, possibly by
adjusting the reward weights or adding
constraints, might be beneficial in future
iterations. More broadly, while the ethically
guided patterns are encouraging, one should
exercise caution in deploying them directly in the
real world. The societal acceptance of how an AV
distributes risk (even if done “ethically” by some
definition) remains to be tested, and what is
optimal in a simulation may not perfectly
translate to complex human environments.
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5.3.3. Real-World Applicability

Despite the high realism of the CARLA
simulation, there are inevitable gaps between the
simulated scenarios and the full richness of real-
world driving. Certain features of real driving —
such as incomplete or noisy sensor data, truly
unpredictable human behavior, and legal
responsibilities — were not fully captured in our
experiments. For instance, the simulation
assumed perfect detection of pedestrians and
accurate estimates of distances and speeds. In a
real AV, sensors can fail to detect a child darting
out or might misclassify objects. Moreover,
human drivers and pedestrians might behave in
ways not modeled in CARLA (e.g., gestures, eye
contact, unconventional movements). The
reliance of our approach on approximate models
for injury risk could also introduce discrepancies;
if actual crash outcomes differ from the
assumptions in our reward model, the AV’s
learned behavior might not perfectly minimize
real injuries. To improve real-world applicability,
it will be important to incorporate more empirical
data into the training process. For example, more
detailed accident statistics or biomechanical data
could refine the injury probability estimates,
making the reward function more accurate.
Likewise, legal frameworks (traffic laws and
right-of-way rules) were not explicitly encoded in
our simulation beyond the scenarios; integrating
such rules could be crucial for an AV operating
in society. In summary, while the simulation
results are promising, extensive real-world
testing and validation would be required to ensure
the policy behaves as intended when faced with
the unpredictability and complexity of actual
roads.

5.3.4. Computational and  Practical
Constraints

Some limitations of the current approach relate
to the practicality of implementing such a policy
in a real vehicle. We observed that the DQN’s
risk evaluations sometimes led to highly cautious
maneuvers that might conflict with the
expectations of human drivers nearby. For
example, the AV might stop in the middle of an
intersection to avoid a potential collision, which
human drivers might not anticipate, potentially
causing confusion or secondary incidents.
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Excessive caution, while safe in isolation, could
reduce traffic flow efficiency or even create new
dangers (as discussed in the cyclist scenario
where hard braking could invite a rear-end crash).
Incorporating feedback from human drivers or
broader traffic models into the training process
could help the agent learn when it is appropriate
to take a risk (or at least not to overreact) in order
to behave more naturally within traffic. Another
practical consideration is computational: our
DQN policy must run in real time on an AV’s
onboard computer. Neural network inference is
generally fast, but in an emergency every
millisecond counts. The complexity of the
network and the need to evaluate many possible
actions could introduce slight delays. Ensuring
that the model can execute within strict real-time
deadlines is essential. Techniques such as
network compression or specialized hardware
(like automotive-grade GPUs or TPUs) might be
needed for deployment. Lastly, one must consider
how this policy would integrate with higher-level
driving systems. In a real vehicle, there are
modules for perception, planning, and control
that all have to work in concert. The ethical DQN
would likely be one component of a larger
system, and careful engineering would be
required to blend its decisions with rule-based
logic and fail-safes that handle scenarios beyond
its training.

5.4. Summary of Combined Findings

Overall, the results indicate that the proposed
DQN-based, human-centric risk mitigation
approach substantially reduces severe collisions
and prioritizes protection of vulnerable road users
in ethically sensitive situations. The behavior of
the learned policy was strongly influenced by the
explicit ethical parameters included in the reward
function, leading to decisions that favor
minimizing harm. These outcomes are
encouraging and demonstrate the potential of
deep RL to handle complex ethical trade-offs. At
the same time, transitioning from simulation-
based experiments to actual roadway deployment
will require further steps. In particular, greater
validation ~ under  real-world  conditions,
refinement of the injury risk models with more
detailed data, and inclusion of additional domain-
specific constraints (such as traffic laws and
cultural norms) will be necessary to ensure the
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approach is viable and acceptable for real
autonomous driving.

6. Conclusion

In this paper, a novel DQN-based framework
was introduced to address ethical decision-
making in autonomous vehicles by emphasizing
human-centric risk mitigation. The approach
incorporated a comprehensive state space that
captured both the ego vehicle’s dynamics and the
attributes of nearby objects, alongside a reward
function that explicitly prioritized minimizing
human injury probabilities, passenger risk, and
vehicle damage. Through evaluations in the
CARLA simulator, the DQN agent’s policy
demonstrated ethically guided behavior in several
challenging traffic scenarios. In particular, the
learned policy showed heightened sensitivity to
vulnerable road users and achieved a reduction in
severe collision outcomes compared to
conventional collision-avoidance methods.

These findings underscore the potential of
reinforcement learning—DQNSs in particular—to
integrate ethical and safety considerations into
AV control policies. However, caution must be
exercised when transitioning from simulation to
real-world implementation. Issues relating to
sensor accuracy, regulatory frameworks, and the
variability of human driving conditions require
careful attention before such a system can be
deployed on public roads.

Future research should therefore focus on a few
key directions. First, real-world validation of the
framework is crucial: the policies learned in
simulation need to be tested in controlled real-
world trials or high-fidelity closed tracks to
ensure they generalize and behave safely under
actual driving conditions. Second, a thorough
sensitivity analysis of the model’s parameters (for
example, the reward weights and key
hyperparameters) should be conducted to assess
how robust the learned policy is to changes in
these settings and to confirm that its ethical
behavior is consistent across a range of scenarios.
Such analysis can help identify any unintended
biases or failure modes. Third, and importantly,
the integration of explicit legal rules and social
norms into the decision-making process should
be explored. This might involve constraining the
DQN’s actions with hard rules that reflect traffic
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laws or embedding societal values (gleaned from
surveys or expert input) into the reward function.
By incorporating legal and ethical guidelines that
society expects AVs to follow, the resulting
policies would be more likely to gain public trust
and comply with regulations.

In summary, this work demonstrates a viable
approach for aligning an autonomous vehicle’s
decision-making with human-centric ethical
principles using deep reinforcement learning. The
DQN agent was able to learn policies that
mitigate harm in complex scenarios, illustrating a
pathway toward safer and more socially
responsible autonomous transportation systems.
Continued research along the outlined directions
will help bridge the gap between simulation and
reality, ultimately contributing to the
development of AVs that not only drive
efficiently but also make decisions in a manner
consistent with societal ethical standards.
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