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Abstract 

In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, 
it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In 
this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the 
finite element method using commercial software ABAQUS. Comparison of the present simulation results 
with the results of the experiments reported in the previous works indicated the validity of the numerical 
analyses. A meta-model based on the feed-forward artificial neural networks are then obtained for modeling 
of both the absorbed energy (E) and the peak crushing force (Fmax) with respect to design variables using 
those data obtained from the finite element modeling. Using such obtained neural network models, a 
modified multi-objective GA is used for the Pareto-based optimization of the aluminum foam-filled thin-
walled tubes considering three conflicting objectives such as energy absorption, weight of structure, and 
peak crushing force. 

 

Keywords: Aluminum foam, Crashworthiness, MLF, Multi-objective optimization, Genetic Algorithm, Pareto.

1. INTRODUCTION 

Advances in technology have led to higher speed 
of transportation which increases the probability of 
traffic accident and serious human damages. Design 
of auxiliary metal structural components capable to 
sustain prescribed loads and dissipate undesirable 
energies while undergoing plastic deformation is one 
of the prime means of energy release protection. 
Therefore, the crash characteristics of energy 
absorbing components have received considerable 
attention over the past decades [1-5]. 

In recent years, researchers have shown an interest 
in using cellular structures (honeycombs, foams, etc.) 
for energy absorption devices. Foams due to their low 
weight and good crushing behaviors are nearly ideal 
energy absorbers [6-8]. Using of aluminum foam 
because of its efficiency and reproducible production 
routes have been developed in the last year [9]. 
Nowadays, the design of modern vehicle structure 
 is driven by many competing criteria. Vehicle weight 
reduction has been prevalent in the automotive 

industry to reduce the fuel consumption. On the other 
hand, design of structural components for the purpose 
of both absorbing kinetic energy and attenuating the 
maximum crushing force have become a special topic 
in design research to ensure the occupant safety in the 
event of a crash. Therefore, the energy absorbing 
capability, the weight of energy absorbing 
components, and the maximum crushing load are 
important objective functions to be optimized 
simultaneously as a complex multi-objective 
optimization problem (MOP). In order to trade-off 
among these conflicting objectives, the Pareto based 
approach is considered in this work for such MOP. It 
has been shown by some of authors [10] that very 
interesting and important design facts can be 
discovered by the Pareto-based optimization of 
energy absorption systems. However, considering the 
computational cost of performing such multi-
objective optimization of a complete dynamic model 
, the direct use of FEM software is prohibitive, if not  
impossible. Therefore, it would be greatly desirable to 
use alternate simplified models instead of time-
consuming FEM during optimization process. In this 
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way, either finite element analysis or experimental 
procedure may be performed to obtain some training 
and testing data for developing that meta-model. 

In fact, system identification and modeling of 
complex processes using input-output data have 
always attracted many research efforts. In fact, system 
identification techniques are applied in many fields in 
order to model and predict the behaviors of unknown 
and/or very complex systems based on given input-
output data [11]. In this way, soft-computing methods 
[12], which concern computation in an imprecise 
environment, have gained significant attention. The 
main components of soft computing, namely, fuzzy 
logic, neural network, and evolutionary algorithms 
have shown great ability in solving complex non-
linear system identification and control problems. 
Many research efforts have been expended to use of 
evolutionary methods as effective tools for system 
identification [13-18]. Among these methodologies, 
multi-layer feed-forward (MLF) artificial neural 
networks with a single hidden sigmoid layer and 
biases are the most frequently used networks because 
of their ability to approximate any function with a 
finite number of discontinuities [19-21]. 

The present study aims at maximizing the energy 
absorption capacity (E), minimizing the weight of 
energy absorption structure (W), and minimizing the 
peak crushing force (Fmax) for aluminum foam-filled 
thin-walled tubes. Finite element modeling (FEM) 
using commercial software ABAQUS are first 
employed to determine the effects of geometrical 
design variables on the energy  

absorption and peak crushing force. A multi- 
layered feed-forward neural network is then 

constructed to precisely establish the relationship  

between those objective functions (E and Fmax) 
and the design variables using the data obtained by 
FEM. The obtained meta-model is finally used in a 
Pareto-based optimization approach to find the best 
possible combination of energy absorption, weight of 
structure and peak crushing force known as the Pareto 
fronts. The corresponding variations of geometrical 
design variables, known as Pareto set, constitute some 
important and informative design principles which 
can be effectively used for optimal design of 
aluminum foam-filled tubes. 

2. Finite element analysis of crushing behavior of 

aluminum foam-filled tubes 

In this section, finite element simulation is performed 
in accordance with one of the test experiments carried 
out by Seitzberger et al. [22]. The specimen has 4 cm 
outer width, 25 cm length and its wall thickness is 
1.5mm. Steel tubes have been made of RSt37 and 
obtained from electrically welded precision profiles. 
Uniaxial tension test results of material are shown in 
Figure 1. The tube was filled with aluminum foam 
(base material AlMg0.6Si0.3) that was produced by a 
powder metallurgical production method, using 
titanium hydride as foaming agent [9], [23]. Density 
of the foam is about 680 kg/m3 and its axial 
compression behavior is shown in Figure 2.  The 
specimen was foamed directly using the tubes as 
moulds and during this foaming process the tubes 
were heated beyond 600C.A universal test machine 
was used to do experiments. To perform quasi-static 
test conditions and reduce influence of inertia effects, 
the specimen compressed without any bound between 
two strong steel plates with 1 mm/s loading velocity. 

 
Fig1. Fitted curve of the Johnson-Cook equation on the tension test results of tube material [22]. 

 

Explicit finite element method has proven 
valuable in solving quasi-static problems. However, it 
should be noted that the explicit solution method is 

developed to model the events in which inertia plays a 
dominant role in the solution such as high speed 
dynamic impact problems. Moreover, the loading rate 
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applied in actual quasi-static experiments is too slow 
which increases the time step too much. Therefore, to 
perform an accurate, low-cost and reliable quasi-static 
analysis, the inertia effects and the time step must be 
reduced, simultaneously. There are two special 
approaches which could be employed in combination 
to perform accurate and economic quasi-static 
analyses using explicit procedure. 

The minimum stable time increment in the explicit 
dynamic analysis can be expressed as 

∆� = ����
�     (1) 

where �� is the element length characteristic, E is 
the young’s modulus, and 	 is the material density. 
According to the equation  (1), artificially scaling up 
the material density by factor of 
� increases the 
stable time increment by factor of 
. Therefore, total 
time step will be decreased because fewer increments 
are required to perform the same analysis. Scaling up 
the mass, however, increases the inertia effects. 
Therefore, to ensure the quasi-static process, the 
loading rate should be kept very low. Another mass 
scaling method is the scaling down the mass of the 
material so that the inertial forces will be minimized. 
When the mass is scaling down, the stable time 
increments are increased and the time step of analysis 
will also be increased. Therefore, to reduce the time  
step, the loading rate must be accelerated [24]. In the  
 

Table 1. Coefficients of curve fitted Johnson-Cook equation 

A B N R2 A 

1.74e8 2.192e8 0.1604 0.9709 1.74e8 

 
 
present study, a semi automatic mass scaling with 
2.5e6 scaling factor is applied to reduce the 
computational costs. 

Foam filled tube was considered between two 
rigid plates where one plate was completely fixed and 
the other one was moved with 15 m/s constant axial 
velocity up to 150mm. Surface to surface contact was 
considered between plate and the tube with 0.5 
friction coefficient. Tie constraint was applied 
between foam and wall of tube. Self-contact 
interaction was used to prevent interpenetration 
between two folds during progressive plastic fold 
formation. 

Johnson-Cook constitutive model is used for  
 

material modeling of steel in Abaqus/Explicit. In 
this  

way, Johnson-Cook equation's coefficients are 
extracted by curve fitting using data obtained from 
tensile test. Johnson-Cook coefficients are presented 
in Table 1 and its curve is superimposed with the 
tensile test curve in Figure 1. It should be noted that 
strain rate in Johnson-Cook equation was eliminated 
because of low speed deformation. 

Data of axial compression test of aluminum foam 
was used in ABAQUS/Explicit to model foam 
properties. 

A simple uniaxial compression test is sufficient to 
extract foam properties. The Young' modulus and 
Poisson's ratio for aluminum foam were 346 MPa and 
0.01 respectively. The behavior of aluminum foam 
was considered as isotropic crushable. 37 data points 
extracted from experimentally obtained stress-strain 
curve were entered directly for plastic behavior of the 
foam. The ratio of yield strength in uniaxial 
compression to yield strength in hydrostatic tension 
and  the plastic Poisson's ratio [25] were also 0.95 and 
0 respectively. Uniform distribution density was 
exerted 680 kg/m3 as well.(figure 2) 

Internal energy, kinetic energy and plastic 
dissipation energy obtained from numerical 
simulation are depicted in Figure 3. According to this 
figure, kinetic energy is very small compared to the 
internal energy and therefore the numerical 
simulation can be considered as a quasi-static 
analysis, confidently. 
To validate numerical model by experimental results 
four parameters were considered; maximum peak 
force, total absorbed energy, mean crush force and 
crush force efficiency. The results of numerical 
simulation and experimental test are depicted in Table 
2. The force-displacement diagram and structure 
deformation obtained numerically are compared with 
the results of experiment performed by Seitzberger et 
al. [22] in Figure 4 and Figure 5. In Figure 4 and 5, it 
can be observed that the number of force-
displacement peaks and troughs in numerical model 
are similar to experimental results and also the 
numerical and experimental fold formations are 
identical. According to Table 2 and Figures 4 and 5 
numerical models predicts experimental results 
properly and the model can be implemented for more 
analyses. 

There are various parameters such as tube 
thickness (t), tube width (C) and A factor in Johnson-
Cook equation of tube material that affect energy 
absorption and peak crushing force. 

 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.iu

st
.a

c.
ir 

at
 2

0:
22

 IR
S

T
 o

n 
F

rid
ay

 M
ar

ch
 3

rd
 2

01
7

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ae
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

18
 ]

 

                             3 / 14

http://www.iust.ac.ir/ijae/article-1-146-en.html
https://ijae.iust.ac.ir/article-1-146-en.html


196  Multi-objective Crashworthiness Optimization….. 

International Journal of Automotive Engineering  Vol. 2, Number 3, July 2012  

 
Fig2. Uniaxial compression test results of aluminum foam with 680kg/m3 density [22]. 

 
Fig3. Kinetic, internal and plastic dissipation energy for an aluminum foam-filled tube under quasi-static loading 

              
 

Fig4. Experimentally [22] and numerically obtained crushing force-displacement responses of aluminum foam-filled tube 

Therefore, by changing the geometrical and 
material independent parameters t,C and A various 
designs will be generated and evaluated by the finite 

element method using ABAQUS software. 
Consequently, a meta-model can be constructed using 
the MLF neural networks, which will be further used 
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for multi-objective Pareto based design of such 
energy absorption structure. In this way, 30 various 
analyses is performed using non-linear 
ABAQUS/Explicit to simulate quasi-static test. 
Results for some of the models are represented in 
Table 3. 

 
Fig5. . Comparison of experimental deformation [22] with 

numerical prediction. 

3. Modeling Using Multi-layer Feed-forward 

Neural Networks 

In principle, neural network has the power of a 
universal approximator, i.e. it can realize an arbitrary 
mapping of one vector space onto another vector 
space [26-27]. The main advantage of neural 
networks is the fact, that they are able to use some a 
priori unknown information hidden in data (but they 
are not able to extract it). Process of ‘capturing’ the 
unknown information is called ‘learning of neural 
network’ or ‘training of neural network’. In 
mathematical formalism to learn means to adjust the 
weight coefficients in such a way that some 
conditions are fulfilled [28]. 

MLF neural networks, trained with a back-
propagation learning algorithm, are the most popular 
neural networks. MLF networks are applied to a wide 
variety of problems [29]. A MLF neural network 
consists of neurons that are ordered into layers. The 
first layer is called the input layer, the last layer is 
called the output layer, and the layers between are 
hidden layers. 

To estimate absorbed energy and peak crushing 
force from the finite element simulations MLF neural 
networks were used. This MLF networks consist of  

 
Fig6. Schematic of MLF neural networks with three layers. 

one hidden layer with ten neurons and one neuron 
as output layer using tan-sigmoid and pulerlin transfer 
functions respectively. Schematic of MLF neural 
networks is shown in Figure 6. A back-propagation 
(BP) algorithm with Levenberg–Marquardt (LM) 
optimization technique was employed to train MLF 
neural networks. By reducing mean square error 
(MSE) for each epoch the accuracy of the networks 
was improved. The accuracy of neural network  

models are give in Tables 4, 5 and Figures 7 
through 9 show comparisons between FEM results 
with neural network results. 

The models obtained in this section are now 
utilized for a Pareto multi-objective crashworthiness 
optimization of aluminum foam-filled tubes 
considering the energy absorption (E), weight of 
structure (W),  and peak crushing load (Fmax) as 
conflicting objectives. Such study may unveil some 
interesting and important optimal design principles 
that would not have been obtained without the use of 
a multi-objective optimization approach. 

4. Multi-objective crashworthiness optimization 

aluminum foam-filled thin-walled tube 

 
Multi-objective optimization, which is also called 

multi criteria optimization or vector optimization, has 
been defined as finding a vector of decision variables 
satisfying constraints to give acceptable values to all 
objective functions [30-31]. In these problems, there 
are several objective or cost functions (a vector of 
objectives) to be optimized (minimized or 
maximized) simultaneously. These objectives often 
conflict with each other so that improving one of 
them will deteriorate another. Therefore, there is no 
single optimal solution as the best with respect to all 
the objective functions. Instead, there is a set of 
optimal solutions, known as Pareto optimal solutions 
or Pareto front [32-36] for multi-objective 
optimization problems. The concept of Pareto front or 
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set of optimal solutions in the space of objective 
functions in multi-objective optimization problems 
(MOPs) stands for a set of solutions that are non-
dominated to each other but are superior to the rest of 
solutions in the search space. This means that it is not 
possible to find a single solution to be superior to all 
other solutions with respect to all objectives so that 
changing the vector of design variables in such a 
Pareto front consisting of these non-dominated 
solutions could not lead to the improvement of all 
objectives simultaneously. Consequently, such a 
change will lead to deteriorating of at least one 
objective. Thus, each solution of the Pareto set 
includes at least one objective inferior to that of 
another solution in that Pareto set, although both are 
superior to others in the rest of search space. Such 
problems can be mathematically defined as: 

subject to m inequality constraints 

and p equality constraints 
p    to1j     ,     0)( ==Xh j ,  (4) 

where n
X ℜ∈*  is the vector of decision or design 

variables, and k
XF ℜ∈)(  is the vector of objective 

functions, which must each be either minimized or 
maximized. However, without loss of generality, it 
is assumed that all objective functions are to be 
minimized. Such multi-objective minimization 
 

 

 Table 2. Comparison of numerical results with experimental results [22]. 

 Experimental Numerical Error (%) 

Peak Crushing Force (kN) 97 89.6 7.6 

Absorbed Energy (kJ) 11.36 11.46 0.1 

Mean Crush Force (kN) 75.74 76.4 0.9 

Crush Force Efficiency 0.78 0.85 9 

 

Table 3. Samples of numerical results. 

Number t (mm) C (mm) A (MPa) Absorbed Energy (kJ) Peak Crushing Force (kN) Weight of Structure (kg) 

1 1.48 60 197 18.41 148 1.244 

2 1.45 70 186 24.37 168.8 1.584 

3 1.43 50 205 14.53 116.8 0.92 

14 1.17 62.5 180 16.11 121.6 1.22 

15 1.15 42.5 200 9.93 80 0.648 

16 1.13 78.75 188 23 159.2 1.776 

28 0.85 71.25 197 16.48 114.4 1.384 

29 0.82 51.25 185 9.84 73.2 0.776 

30 0.8 61.25 205 12.82 92 1.048 

 

Find the vector [ ]T

nxxxX
**

2
*
1

* ,...,,= to optimize 
[ ]T

k XfXfXfXF )(),...,(),()( 21= , (2) 
m    to1i      ,    0)( =≤Xgi , (3) 
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Fig7. Variations of the absorbed energy with input data 

 
Fig8. Variations of the peak crushing force with input data 

 
Fig9. Variations of the specific energy absorption with input data. 
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Table 4. Statistical measures of the obtained MLF models for 

training set 

 

 
based on Pareto approach can be conducted using 
some definitions: 
Definition of Pareto dominance 

A vector [ ] k

kuuuU ℜ∈= ,...,, 21  is dominant to 
vector [ ] k

kvvvV ℜ∈= ,...,, 21
  

(denoted by VU p  ) if and only if  
quantification of the importance of each objective 

}{ ki ,...,2,1∈∀
, ii vu ≤

 ∧ 
}{ kj ,...,2,1∈∃

 : ju
<

jv
 In other words, there is at least one ju

 which is 

smaller than jv
 whilst the remaining u ’s are either 

smaller or equal to corresponding v ’s. 
Definition of Pareto optimality 

A point Ω∈*
X  ( Ω  is a feasible region in 

n
ℜ  

satisfying equations (2) and (3) is said to be Pareto 
optimal (minimal) with respect to all Ω∈X  if and 

only if )()( *
XFXF p . Alternatively, it can be 

readily restated as  

}{ ki ,...,2,1∈∀  , }{ *
XX −Ω∈∀  

)()( *
XfXf ii ≤  ∧ }{ kj ,...,2,1∈∃  : 

)()( * XfXf jj < . In other words, the solution 
*

X  

is said to be Pareto optimal (minimal) if no other 

solution can be found to dominate 
*

X  using the 
definition of Pareto domin

 

Definition of a Pareto Set 

For a given MOP, a Pareto set Ƥ ٭is a set in the 
decision variable space consisting of all the Pareto 
optimal vectors 

 Ƥ٭ |{ Ω∈= X ∄ )}()(: XFXFX p′Ω∈′ . 

In other words, there is no other X ′  as a vector of 

decision variables in Ω that dominates any X ∈Ƥ٭.  
 

Definition of a Pareto front 

For a given MOP, the Pareto front ƤŦ٭ is a set of 
vector of objective functions which are obtained using 
the vectors of decision variables in the Pareto set Ƥ٭, 
that is  ƤŦ٭

∈== XXfXfXfXF k :))(....,),(),(()({ 21

Ƥ٭}. In other words, the Pareto front ƤŦ٭ is a set of 

the vectors of objective functions mapped from Ƥ٭.  
Evolutionary algorithms have been widely used 

for multi-objective optimization because of their 
natural properties suited for these types of problems. 
This is mostly because of their parallel or population-
based search approach. Therefore, most of the 
difficulties and deficiencies within the classical 
methods in solving multi-objective optimization 
problems are eliminated. For example, there is no 

need for either several runs to find the Pareto front or 
using numerical weights. In this way, the original 
non-dominated sorting procedure given by Goldberg 
[37] was the catalyst for several different versions of 
multi-objective optimization algorithms [32-33]. 
However, it is very important that the genetic 
diversity within the population be preserved 
sufficiently. This main issue in MOPs has been 
addressed by many related research works [38]. In 
this paper, the premature convergence of MOEAs is 
prevented and the solutions are directed and 
distributed along the true Pareto front using a recently 
developed algorithm, namely, the є-elimination 
diversity algorithm by some of authors, [39]. 

In order to investigate the optimal design foam 
filled tubes in different conditions of design variables 
(t, C and A), two multi-objective (2-objective and 3-
objectve) optimization problems (MOPs) have been 
solved. The MLF neural network models obtained in 
previous sections are now deployed in these 2-
objective and 3-objectve optimization problems. 

4.1 Two-objective optimization problem 

The two conflicting objectives in this section are 
specific energy absorption (SEA) and peak crushing 
force (Fmax) to be simultaneously optimized with 
respect to the design variables. The 2-objective 
optimization problem can be formulated in the 
following form: 

 R2 MAPE(%) RSME 

Absorbed Energy 0.993 1.517 1.9 kJ 

Peak Crushing Force 0.918 0.654 11.33 kN 

Specific Energy 

Absorption 
0.973 0.764 1.265 kJ/kg 
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   Maximize     
f1= SEA (t, C, A) (Specific Energy Absorption) 
   Minimize     
f2= F (t, C, A) (Peak Crushing Force)           (5) 
 
    0.8mm < t <1.5mm 
    40mm < c < 80mm 
    190MPa < A < 210MPa 
 
Where t, C and A are thickness of the tube, width  

of the tube and A coefficient in the Johnson-Cook 
equation of tube's material respectively. The 
evolutionary process of Pareto multi-objective 
optimization is accomplished by using population size 
of 200  in all runs with crossover probability Pc as 0.7 
for 500 generations.  

 
Table 5. Statistical measures of the obtained MLF models for 

testing set. 

     
    The corresponding Pareto front of two objectives 
(SEA) and (Fmax) has been shown in Figure 10. It is 
clear from this figure that choosing appropriate value 
for specific energy absorption (SEA) or peak crushing 
force (Fmax), for obtaining a better value of one 
objective would cause a worse value of another 
objective. However, if the set of decision variables is 
selected based on each of the corresponding Pareto 
sets, it will lead to the best possible combination of 
those two objectives shown in Figure 10. In other 
words, if any other pair of decision variables is 
chosen, the corresponding values of the pair of 
objectives, i.e., (SEA) and (Fmax), will locate a point 
inferior to the obtained Pareto front. Such inferior 
area in the space of the two objectives is in fact 
up/left side of figure. Clearly, there are some 
important optimal design facts between the two 
objective functions which have been discovered by 
the Pareto optimization of the MLF neural network 

models obtained using the finite element analysis of 
the aluminum foam-filled tubes. Such important 
design facts could not have been found without the 
multi-objective Pareto optimization of those MLF 
models. Values of peak crushing force and absorbed 
energy for the optimum points p, r, s and t obtained 
from multi-objective optimization of MLF model is 
presented in Table 6.  
 

4.2 Three-objective optimization problem 

 
A multi-objective optimization design of foam 

filled tube including three objectives can offer more 
choices for a designer. Moreover, such 3-objective 
optimization can subsume all those 2-objective 
optimization results presented in the previous section. 
This will allow finding trade-off optimum design 
points from the view point of all three objective 
functions simultaneously. Therefore, in this section, 
three objective functions, namely, energy absorption 
(E), weight of structure (W), and peak crushing force 
(Fmax) are chosen for the multi-objective optimization. 
It is evident that E is maximized whilst both W and 
Fmax are minimized simultaneously in a Pareto sense 
of the multi-objective optimization process of foam 
filled tubes. The 3-objective optimization problem 
can be formulated in the following form: 

 
   Maximize     

f1= E (t, C, A) (Absorbed Energy) 

   Minimize     

f2= W (t, C, A) (Weight of Structure) (6) 
   Minimize     

f3= Fmax (t, C, A) (Peak Crushing Load)  
     0.8mm < t <1.5mm 
    40mm < c < 80mm 
    190MPa < A < 210MPa 
 
A population of 400 individuals with a crossover 

probability of 0.7 has been used in 500 generations 
for such 3-objective optimization problems.  

Figure 11 depicts the non-dominated individuals 
of 3-objective optimization in the plane of (W-E). 
Such non-dominated individuals of both 3-objective 
optimization have been shown in the plane of (W- 
Fmax) and (E- Fmax) in Figures 12 and 13, respectively. 
It should be noted that there is a single set of 
individuals as a result of the 3-objective optimization 
of E, W and Fmax that are shown in different planes. 
Therefore, there are some points in each plane that 
may dominate others in the case of 3-objective 
optimization. However, these individuals are all non-  

 R2 MAPE (%) RSME 

Absorbed Energy 0.935 9.291 3.01 kJ 

Peak Crushing 

Force 
0.968 3.494 8.892 kN 

Specific Energy 

Absorption 
0.826 3.462 1.408 kJ/kg 
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Fig10. Pareto front of specific energy absorption and peak crushing force. 

 
Table 6. The values of objective functions and their associated design variables of the optimum points of the 2-objective optimization 

process. 

Optimum Desired Points p r T s 

Specific Energy Absorption (kJ/kg) 18.17 18.17 20.57 36.11 

Peak Crushing Force (kN) 21.06 50.47 95.11 100.1 

t (mm) 0.8 0.96 1.47 1.5 

C (mm) 40 40.01 40.01 41.73 

A (MPa) 190 190.06 206.51 207.11 

 

 

Table 7. The values of objective functions and their associated design variables of the optimum desired points selected from the 3-objective 

optimization process. 

Optimum Desired Points e f 

Absorbed Energy (kJ) 9.638 15.54 

Peak Crushing Force (kN) 36.03 101.71 

Weight of Structure (kg) 0.4133 0.7889 

t (mm) 0.8 1.203 

C (mm) 40 54.28 

A (Mpa) 190 193.81 
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dominated when considering all three objectives 
simultaneously. By careful investigation of the results 
of 3-objective optimization it can readily be observed 
that the results of such 3-objective optimization 
provide more optimal choices for the designer.  

It is now possible to seek an optimum design point 
(desired point) which is located almost on all Pareto 
fronts of Figures 11 through 13. This can be achieved 
by two different methods employed in this paper, 
namely, the nearest to ideal point method and 
mapping method. In the nearest to ideal point method, 
first, an ideal point with the best values of each 
objective functions is considered. Secondly, the 
distances among all non-dominated points to the ideal 
point is calculated. In this method, the desired point 
represents minimum distance to the ideal point. In the 
mapping method, the values of objective functions of 
all non-dominated point are mapped into interval 0 
and 1. Using the sum of these values for each non-

dominated point, the desired point simply represents 
the minimum of the sum of those values.  

Optimum design points e, f are the points which 
have been obtained from the nearest to ideal point 
method and mapping method, respectively. In the 
figure 12, plain of (W- Fmax), point e dominates point 
f. Further, both points e and f are non-dominated as 
they shown in Figures 11 and 13, the plane of (W-E) 
and the plain of (E- Fmax) respectively. The 
comparison of the values of objective functions 
associated with the optimum points e and f obtained 
from the 3-objective functions optimization is given 
in Table 7. 

Consequently, such multi-objective optimization 
of energy absorption (E), weight of structure (W) and 
peak crushing load (Fmax  ) provides more optional 
choices of design variables based on Pareto non-
dominated points which can be selected from a trade-
off point of view. 

 
 

 
Fig11. Absorbed energy versus the weight of structure in 3-objective optimization 
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Fig12. Peak crushing force versus the weight of structure in 3-objective optimization 

 
 

 
Fig13. Absorbed Energy versus peak crushing Force in 3-objective optimization. 

 
 

5. Conclusion 

 
Genetic algorithms have been successfully used 

for multi-objective Pareto based optimization of 
aluminum foam-filled tubes. Two different meta-
model for specific energy absorption and peak 
crushing force have been found by multi layer feed 
forward neural network using some numerically 
obtained input-output data using the FEM. The 
derived meta-models have been then used in 
evolutionary multi-objective Pareto based 
optimization processes. The objective functions 
which conflict with each other were selected as 
absorbed energy (E), weight of structure (W) and 
peak crushing force (Fmax). The multi-objective 
crashworthiness optimization of aluminum foam-
filled tubes led to the discovering some important 
trade-offs among those objective functions. Such 
combined application of MLF neural network 
modeling of numerical input-output data and 
subsequent non-dominated Pareto optimization 
process of the obtained meta-models is very 
promising in discovering useful and interesting design 
relationships. 
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