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The rising demand for sustainable transportation has intensified research on 

Fuel Cell Hybrid Electric Vehicles (FCHEVs). Integrating fuel cells with 

lithium-ion batteries provides a pathway to enhance energy efficiency and 

driving performance, but ensuring the durability of both components under 

real operating conditions remains a critical challenge. This work proposes 

an integrated framework to improve FCHEV performance and lifetime 

through combined modeling, degradation analysis, and optimized energy 

management. Dynamic vehicle simulations were conducted using the 

ADVISOR platform under both the Urban Dynamometer Driving Schedule 

(UDDS) and a real-world cycle based on Tehran traffic data. Degradation 

models were implemented to capture platinum dissolution in the Proton 

Exchange Membrane Fuel Cell (PEMFC) and capacity loss in the lithium-

ion battery, incorporating the effects of state of charge, temperature, and 

current rate. An energy management strategy was developed using a Fuzzy 

Logic Controller (FLC) for fuel cell–battery power distribution, which was 

further refined with a Genetic Algorithm (GA). The optimization objectives 

included reducing hydrogen consumption and extending component 

lifetimes. The GA-optimized FLC extended PEMFC lifetime by 50.6% 

Tehran and 12.9%  UDDS and reduced battery capacity fade by 10% and 

4.9%, respectively. While direct hydrogen consumption increased in 

Tehran due to more aggressive regenerative-energy routing to the battery, 

the Equivalent Fuel Consumption (EFC) decreased from 971.32 → 937.21 

g/100 km (Tehran) and 794.41 → 782.24 g/100 km (UDDS), reflecting a 

net efficiency gain once SOC restoration is accounted for. 
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1. Introduction  

 With the rising demand for clean and efficient 

transportation, fuel cell hybrid electric vehicles 

(FCHEVs) integrated with battery energy 

storage systems have become a promising 

solution. These vehicles aim to reduce fuel 

consumption and enhance performance, 

thereby playing a vital role in decreasing 

reliance on fossil fuels. A significant challenge 

in FCHEV design and optimization lies in 

extending the lifespan of the fuel cell and the 

battery, which are heavily influenced by 

driving patterns and traffic conditions. 

Recent research has concentrated on 

optimizing power distribution and vehicle 

design. For example, genetic algorithms have 

effectively optimized power management 

strategies, resulting in prolonged battery and 
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fuel cell life, reduced hydrogen consumption, 

and lower overall ownership costs[1]. 

Investigations into battery degradation 

demonstrate that refined energy management 

strategies can significantly improve vehicle 

performance while minimizing costs[2]. Due 

to the high expense and limited durability of 

fuel cells and batteries, advanced energy 

management is essential to extend their 

operational life and reduce costs. Moreover, 

online optimization techniques have been 

developed to mitigate degradation under real-

world driving scenarios[3]. Predictive models 

for battery lifespan and energy loss 

minimization have been proposed, 

contributing to fuel savings and improved 

battery longevity[4]. Artificial intelligence 

approaches, such as self-discharge (SD) based 

models, have enhanced the accuracy of battery 

performance and remaining useful life 

predictions[5]. Additionally, hybrid control 

methods combining fuzzy logic and switching 

techniques have been explored to bolster fuel 

cell durability and optimize fuel consumption 

in FCHEVs[6]. A prior work formulated the 

joint optimization of power management and 

component sizing in plug-in hybrid fuel 

cell/lithium-ion battery vehicles as a 

constrained multi-objective problem (MOP) 

[7], seeking to minimize fuel use and cost 

subject to performance limits. To solve this, a 

particle swarm optimization algorithm based 

on Pareto dominance (PMOPSO) was 

developed, successfully generating a set of 

optimal design and energy management 

solutions. 

As transportation depends heavily on fossil 

fuels, energy management in PEMFC based 

plug-in hybrid sedans has gained 

prominence[8]. A two-stage control strategy 

was introduced to reduce hydrogen 

consumption and safeguard fuel cell health, 

achieving a balanced trade-off between fuel 

economy and durability, as validated through 

Matlab/Simulink simulations. Enhancing 

lithium-ion battery longevity is fundamental to 

sustainable electric mobility. Degradation 

processes involve interdependent 

electrochemical, thermal, and mechanical 

mechanisms influenced by material 

composition, operational parameters, and 

system architecture. Load reduction strategies 

are practical to prolong battery life, though 

optimal implementation and effects remain 

under investigation. Reviews categorize these 

strategies into dynamic and static methods[9]. 

Estimating battery capacity loss and remaining 

life online, particularly under real driving 

conditions, remains challenging but crucial for 

effective vehicle energy management. A 

method employing genetic algorithms for 

component sizing based on empirical driving 

data was applied to a hybrid vehicle, 

demonstrating practical capacity loss 

estimation and a clear correlation between 

battery degradation and driving 

conditions[10]. 

In addition to control-oriented approaches, the 

component sizing of hybrid energy-storage 

systems plays a crucial role in determining 

overall durability and efficiency. The ratio 

between fuel-cell power and battery capacity 

directly affects the average current density, 

temperature rise, and depth of discharge—

parameters that accelerate degradation if not 

properly balanced. Studies on optimum sizing 

and energy-management co-design[11], have 

shown that carefully selected power-energy 

ratios can substantially extend battery life 

while maintaining high system efficiency. 

Building on these insights, the present research 

concentrates on the control dimension of 

durability—developing a GA-optimized fuzzy 

logic controller for a fixed but realistic 

FC/battery configuration—as a foundation for 

future integration with size-optimization 

frameworks. 

Despite these advances, few studies integrate 

battery degradation modeling with energy 
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management under real-world traffic 

conditions in a way that is both 

computationally efficient and practically 

applicable. To address this gap, the present 

study proposes a durability-driven energy 

management strategy that jointly considers 

fuel cell aging and battery degradation. By 

integrating physical degradation models into a 

fuzzy-logic-based control system, and further 

optimizing the controller with a genetic 

algorithm, the approach aims to extend system 

lifetime while also reducing hydrogen 

consumption. The proposed framework is 

validated through simulations on two driving 

cycles: the standardized UDDS cycle and a 

real-world traffic cycle developed for Tehran. 

The results demonstrate measurable gains in 

durability, energy efficiency, and stability of 

state of charge, suggesting that this method 

provides a practical pathway for improving the 

reliability of FCHEVs in real-world use. 

2. Analysis of Fuel Cell Hybrid Electric 

Vehicle Performance Based on Driving 

Cycles 

 A driving cycle is a time-based speed profile 

that simulates typical driving behavior in a 

specific city or region. It is shaped by the road 

network, traffic conditions, driving culture, 

and geographic characteristics. Driving cycles 

are fundamental in assessing vehicle 

performance, with particular importance for 

modeling and managing energy in fuel-cell 

hybrid electric vehicles To really understand 

and improve energy systems, it’s important to 

test them under the right driving conditions. In 

this study, among the driving cycles examined, 

the UDDS is depicted in Figure 1, which 

reflects common city driving, and (Figure 2) 

the Tehran traffic cycle, built from real traffic 

data and local driving habits. Looking at how 

fuel-cell hybrid cars perform in both cases 

gives a clearer picture of their energy use and 

points to better ways of making them more 

efficient. 

Using the ADVISOR environment, a dynamic 

model of the fuel cell hybrid vehicle was 

formulated. To ensure the results reflect a 

range of driving conditions, several cycles 

were included in the simulations: UDDS, the 

European cycle, and a Tehran-specific cycle 

based on local traffic data. The main technical 

details of the vehicle are listed in Table 1, 

covering the battery pack, fuel cell stack, 

electric motor, and transmission. All of these 

parts were brought together in the simulation 

so their interactions could be studied. In this 

setup, the fuel cell works as the main power 

source, the battery stores extra energy, and the 

motor turns that energy into movement. The 

electronic control unit (ECU) keeps everything 

coordinated to get the best performance out of 

the system. Figure 3 shows how these 

subsystems work together and highlights the 

way they contribute to improving the vehicle’s 

efficiency. 

 

Figure 1: UDDS drive cycle 

 

Figure 2: TEHRAN drive cycle 
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Figure 3: Basic structure of a fuel cell hybrid 

vehicle 

Table 1: Fuel cell hybrid vehicle specifications 

Components Quality Value Unite 

Vehicle 

specifications 

Drag 
coefficient 

(CD) 
0.318 -- 

Front view 

area (Af) 
2.1 m2 

Effect 

coefficient 

of rotating 

objects (δ) 

1.078 - 

vehicle 

Weight 
1531 Kg 

Battery[12] 

Nominal 

capacity 
37 Ah 

Voltage 350 V 

 

Fuel cell 

Maximum 

power 
70 KW 

Active area 320 𝑐m2 

 

 

Motor 

Maximum 

power 
75 KW 

Maximum 

speed 

6000 rpm 

Maximum 

torque 
280 Nm 

 

3. Modeling of electrochemical surface 

degradation (ECSA) and voltage drop in 

fuel cells 

 Electrochemical surface area degradation and 

voltage loss are two major issues that strongly 

affect both the performance and lifespan of 

fuel cells. ECSA degradation is mainly caused 

by the dissolution of platinum, which is a key 

factor in the durability and efficiency of fuel 

cell catalysts. In this study [13,14], the 

platinum dissolution model proposed by 

Robin, Gerard, and their team is used. The 

model explains the process in three steps: first, 

platinum atoms detach from the crystal lattice; 

second, these atoms undergo oxidation; and 

finally, the oxidized atoms are removed from 

the catalyst surface. 

The overall energy of this process is obtained 

by adding together the energy contributions 

from each stage, calculated through density 

functional theory (DFT). The free energy of 

oxidation (ΔGelec = −2αFΔχ) is derived from 

transition state theory (TST) and reflects the 

influence of the local electrochemical 

potential. The free energy of desorption 

(ΔGdes) is determined using an empirical 

correlation. Finally, the kinetic rate of 

platinum dissolution (𝑣𝑑𝑖𝑠𝑠) is expressed by an 

equation that describes how the radius of 

platinum nanoparticles changes with time. 

This comprehensive modeling approach 

provides a mechanistic understanding of 

catalyst degradation phenomena, offering 

valuable insights for enhancing the durability 

and performance of fuel cell systems. 

𝑣𝑑𝑖𝑠𝑠 = 𝑘𝑒−
∆𝐺

𝑅𝑇 = 𝑘𝑒
(−∆𝐺𝑠+2𝛼𝐹∆𝜒+𝛽𝐸𝐺𝑡)

𝑅𝑇        (1)                         

𝑑𝑟𝑝𝑡

𝑑𝑡
= −𝑣𝑑𝑖𝑠𝑠

𝑀𝑝𝑡

𝜌𝑝𝑡
                                      (2)                        

 In fuel cells, voltage loss mainly arises from 

the oxidation of the platinum catalyst. In this 

reaction, platinum combines with oxygen to 

form platinum oxide (PtO), which reduces the 

catalyst’s activity and, in turn, negatively 

affects the overall performance of the system. 

A linear model is developed to accurately 

predict cell voltage degradation over time, 

correlating the platinum oxide voltage (𝑉𝑝𝑡𝑜) 

with the catalyst's aging duration [15]. 
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𝑉𝑝𝑡𝑜(𝑡) = 𝑉𝑝𝑡𝑜,0 + 𝑉𝑝𝑡𝑜,1𝑡                          (3)                        

An exponential model is also used to estimate 

the reduction in crossover current density 

(𝑖loss ) [16] : 

𝑖loss (𝑡) = 𝑖loss ,𝑜 exp(𝑖loss ,1𝑡)                     (4) 

An exponential model is used to describe the 

changes in resistance over time [17]: 

𝑅(𝑡) = 𝑅0 𝑒𝑥𝑝(𝑅1𝑡)                                 (5) 

Additionally, the concentration decreases 

exponentially and is described by two 

parameters related to aging [18]: 

𝑚𝑡 = 𝑚𝑜 𝑒𝑥𝑝(𝑚1𝑡)                                  (6) 

𝑛𝑡 = 𝑛𝑜 𝑒𝑥𝑝(𝑛1𝑡)                                     (7) 

The estimation of reversible voltage is also 

performed using the following equation [19]: 

𝐸𝑟𝑒𝑣 = 1.229 − 0.85 ∗ 10−3(𝑇 − 298.15) +

4.309 ∗ 10−3𝑇 [𝑙𝑛(𝑃𝐻2) +
1

2
𝑙𝑛(𝑃𝑜2)]     (8) 

Finally, the total fuel cell voltage is calculated 

by combining the above relationships as 

follows: 

𝑉 = 𝐸rev − (𝑉PtO,o + 𝑉𝑃𝑡𝑂,1𝑡) −
𝑅𝑇

2𝛼𝑎𝐹
𝑙𝑛 (

𝑖(𝑡)+𝑖loss ,𝑜 exp(𝑖loss ,1𝑡)

𝑖𝑜,𝑎
) −

𝑅𝑇

4𝛼𝑐𝐹
𝑙𝑛 (

𝑖(𝑡)+𝑖loss ,𝑜𝑒𝑥𝑝 (𝑖loss ,1𝑡)

𝑖𝑜,𝑐
) − 𝑖(𝑡)(𝑅0 ⋅

𝑒𝑥 𝑝(𝑅1𝑡) − 𝑚0 ⋅ 𝑒𝑥 𝑝(𝑚1𝑡)[𝑒𝑥𝑝(𝑖(𝑡) ⋅ 𝑛0 ⋅
𝑒𝑥𝑝(𝑛1𝑡)) − 1]                                       (9) 

This equation expresses how aging parameters 

affect the decline in fuel cell voltage and 

efficiency. The model incorporates seven time-

dependent aging parameters (Vpto  ،αa  ،iloss  ،

αc  ،R     ، n   ،  m), which progressively diminish 

during operation, reflecting catalyst 

degradation, membrane resistance growth, and 

electrochemical surface area loss. Two 

fundamental constants (F, R) remain invariant, 

while four adjustable parameters (T  Erev ,  io,c, 

and io,a) enable operational optimization to 

mitigate performance decay. The charge 

transfer coefficient (α) requires careful 

calibration, as its value critically affects 

activation losses and catalyst kinetics [17]. For 

implementation guidance, consult 

methodologies combining empirical aging 

models with parameter identification 

techniques, such as polarization curve fitting 

or adaptive Kalman filters. 

 Figure 4 makes it clear that as current density 

increases, the fuel cell’s voltage steadily drops. 

This happens because of resistance inside the 

cell and limits in the reaction itself. Over the 

first 300 hours, the drop becomes more 

noticeable and lines up with a reduction in 

Electrochemical Surface Area. As the ECSA 

shrinks, the electrode has fewer active sites, 

which means the catalyst works less 

effectively. At first, higher current density 

boosts output power, but after reaching a peak, 

the losses take over and power starts to fall. 

With time, as the ECSA keeps declining, the 

maximum power the cell can produce also 

goes down. By 300 hours, when the ECSA 

falls to 0.7766, the power output at higher 

current densities drops sharply, showing just 

how much the catalyst has degraded and how 

efficiency suffers as a result. 

3.1. Environmental Effects and Parameter Drift 

Environmental and aging effects were 

considered in the modeling phase through 

parameterized maps representing temperature-

dependent and time-dependent degradation of 

both PEMFC and Li-ion battery. 

The PEMFC model includes gradual voltage 

reduction and resistance increase over time, 

while the battery model captures capacity fade 

and power loss with depth of discharge. 

These maps emulate realistic drift behavior 

under varying operating conditions. 

However, the control system assumes these 

effects are known and bounded, without 

applying adaptive rule updates during 

operation. Although the present fuzzy logic 

controller (FLC) assumes nominal operating 

conditions, temperature and ambient variations can 

gradually shift component characteristics such as 

stack voltage efficiency, battery internal resistance, 

and available power limits. To capture these 

dependencies, the degradation sub-models used in 

this study include temperature-dependent 

coefficients for both PEMFC voltage decay and Li- 
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 ion capacity fade. However, the controller itself 

currently does not update its rule base online. In 

future work, adaptive extensions could be 

implemented by incorporating state-of-power 

(SOP) or state-of-health (SOH) observers to track 

parameter drift in real time and by scheduling FLC 

membership functions according to cell 

temperature and estimated SOP. A hybrid Model 

Predictive Control (MPC)–FLC structure, as 

demonstrated in [20], could further improve 

constraint handling and responsiveness under 

fluctuating thermal or traffic conditions. 

 

4. Cycle Aging Prediction Model for 

Lithium-Ion Batteries 

 In this study, the battery is represented by an 

equivalent electrical circuit, which allows its 

dynamic behavior and operating 

characteristics to be captured more accurately. 

The model takes the battery’s power demand 

as an input, estimated from the SOC and 

internal resistance. With this setup, battery 

performance can be predicted more reliably 

across different conditions. In many laboratory 

studies, battery cycle life is tested using 

standardized or synthetic profiles. While 

useful, these profiles don’t always match how 

batteries are actually used, so the results may 

not fully reflect real-world behavior. For 

example, the aging model in reference [21] is 

based on experimental data but does not 

account for the role of SOC. This is important 

because SOC strongly influences both 

performance and lifetime. Other factors, such 

as depth of discharge (DOD) and charging 

patterns, also shape how quickly capacity 

fades and how long the battery can last. 

How a battery ages in practice depends on 

more than just its design—it is also strongly 

influenced by factors such as temperature, 

charging rate, and everyday usage patterns. If 

a model is based only on controlled laboratory 

tests and leaves out the effect of state of 

charge, it cannot fully reflect real operating 

conditions. To make predictions more 

meaningful, models need to capture the 

influence of SOC together with these 

environmental and operational factors. With 

this integration, aging models provide a truer 

picture of battery behavior and allow for more 

reliable assessments of long-term 

performance. 

Reference [22] employed a square wave 

current profile to describe capacity 

degradation. A battery aging model was 

developed for systems similar to those in fuel 

cell hybrid electric vehicles, specifically 

targeting charging scenarios at low SOC 

conditions. The model incorporated the 

temperature dependence of capacity fade using 

the Arrhenius equation; however, its validation 

was limited, as it did not cover a broad range 

of temperatures. In the referenced[23] study, 

aging tests were performed using a standard 

load profile that systematically varied 

temperature, DOD, and current rates (C-rates) 

to analyze their individual effects on capacity 

fade. While the analysis provided insights into 

how each parameter influences battery 

degradation, it did not yield a unified aging 

 

Figure 4:  Polarization curve and relative power curve under certain time and ECSA 
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model that simultaneously accounts for the 

combined effects of all these factors. As a 

result, the model lacks the comprehensiveness 

needed to accurately predict battery aging 

under real-world FCHEV operating 

conditions, where multiple stressors interact 

dynamically. 

This research uses a damage accumulation 

model calibrated with historical battery data 

from a hybrid electric vehicle (HEV) to predict 

battery cycle life. This model incorporates 

dependencies on SOC, temperature, and 

current rate. The damage accumulation models 

proposed in references [24,25],[21] describe 

the effects of aging factors such as current rate 

(Ic), temperature (q), and SOC based on 

accumulated damage during operational 

conditions expressed in ampere-hours or total 

cycle count. 

 𝑄𝑙𝑜𝑠𝑠, representing normalized capacity loss, 

is utilized here to assess battery degradation 

dynamics. 

𝑄𝑙𝑜𝑠𝑠(𝑝, 𝐴) =
𝑄𝑏𝑎𝑡𝑡(0)−𝑄𝑏𝑎𝑡𝑡(𝑝,𝐴)

𝑄𝑏𝑎𝑡𝑡(0)
                       (10) 

 The aging factor vector p (comprising Ic, Tc, 

SOC) defines the operating conditions, 

where 𝑄𝑏𝑎𝑡𝑡(0) and 𝑄𝑏𝑎𝑡𝑡(𝑝, 𝐴) symbolize the 

initial and degraded capacities, respectively. 

The capacity degradation model is expressed 

as: 

𝑄𝑙𝑜𝑠𝑠(𝑝, 𝐴ℎ) = 𝜎𝑓𝑢𝑛𝑐(𝑝). 𝐴𝑧                            (11) 

The term   𝜎𝑓𝑢𝑛𝑐(𝑝) denotes a nonlinear 

mapping of the aging factors (Ic, Tc, SOC), 

formulated as follows: 

𝜎𝑓𝑢𝑛𝑐(𝑝) = (𝛼. 𝑆𝑂𝐶 + 𝛽). 𝑒𝑥𝑝 (
−𝐸𝑎+𝜂.𝐼𝑐

𝑅.(273.15+ 𝜃)
) (12) 

Here, α and β define the dependence on SOC, 

η models the dependence on Ic, the activation 

energy (Ea) has a value of 31,500 [J/mol], θ 

represents the battery temperature [°C] , and R 

is the universal gas constant. 

This study proposes a two-step approach to 

identify the parameters of the proposed 

capacity degradation model. 

Step One: This stage involves identifying the 

parameters z and 𝜎𝑓𝑢𝑛𝑐 from experimental 

data. For further model refinement, the average 

value of z is taken as 0.57. 

Step Two: In this stage, the parameter η is set 

to 152.2. The severity factor function 

parameters, specifically α and β, are identified 

based on the experimental data presented in 

Table 2. 

 These steps are designed to enhance the 

accuracy of the capacity degradation model 

and align it more closely with experimental 

observations. The ultimate goal is to improve 

the predictive capability of the battery’s 

performance under real-world operating 

conditions. 

Table 2: Optimal values of α and β [26] 

 𝜶(𝑺𝑶𝑪) 𝜷(𝑺𝑶𝑪)  

SOC < 45% 2896.6 7411.2 

SOC≥ 45% 2694.5 6022.2 

 

 Since a 20% capacity loss is commonly 

considered the end of life (EOL) for batteries 

in automotive applications, a value of 𝑄𝑙𝑜𝑠𝑠 = 

20% is assigned in equation (11). Then, the 

total discharged capacity 𝐴total (𝐼𝑐, 𝑇𝑐) and the 

corresponding number of cycles until EOL can 

be calculated as follows: 

𝐴total (𝐼𝑐 , 𝑇𝑐) = [
20

  σfunc(p)
]

1

𝑧
                               (13) 

𝑁(𝐼𝑐 , 𝑇𝑐) =
𝐴total (𝐼𝑐,𝑇𝑐)

𝐶bat 
                                       (14) 

Using these equations, the cumulative 

discharged capacity and cycle count to end-of-

life can be quantified. The residual battery 

capacity is subsequently derived as: 

𝑄(𝑡) = 𝑄(𝑡0) −
∫  

𝑡

𝑡0
|𝐼(𝜏)|𝑑𝜏

2×3600𝑁(𝐼𝑐,𝑇𝑐)𝐶𝑏𝑎𝑡
                   (15) 

The degradation rate of battery capacity is 

obtained by differentiating equation (16): 

𝑄̇(𝑡) = −
|𝐼(𝑡)|

2𝑁(𝐼𝑐,𝑇𝑐)𝐶𝑏𝑎𝑡
                                    (16) 

 [
 D

O
I:

 1
0.

22
06

8/
as

e.
20

25
.7

19
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
ae

.iu
st

.a
c.

ir
 o

n 
20

26
-0

1-
06

 ]
 

                             7 / 16

http://dx.doi.org/10.22068/ase.2025.719
https://ijae.iust.ac.ir/article-1-719-fa.html


Durability-Driven Energy Management for Fuel Cell Hybrid EVs: Multi-Scenario Optimization Across Different 

Traffic and Driving Cycles 

4878 Automotive Science and Engineering (ASE) 
 

From equation (16), the state of health (SOH) 

degradation rate is derived, as illustrated in 

Figure 5. These relationships help us analyze 

the impact of current and environmental 

conditions on battery capacity and its overall 

health status. 

 

Figure 5: Battery health level decay rate as a 

function of current intensity 

5.  Energy management strategy in hybrid 

fuel cell vehicles 

A fuzzy logic–based controller plays a central 

role in optimizing energy management for 

hybrid fuel cell vehicles. By enabling real-time 

decision-making, it regulates power flow 

between the fuel cell and supplementary 

energy storage units, thereby improving 

system efficiency and extending component 

durability. The controller evaluates two 

primary inputs battery SOC and instantaneous 

power demand to determine the appropriate 

power distribution strategy. In this study, five 

membership functions were designed for each 

input variable SOC and power demand—while 

seven membership functions were defined for 

the output variable. Figure 6 depicts the fuzzy 

membership functions alongside the 

corresponding fuzzy inference surface. The 

fuzzy control rules, summarized in Table 3, are 

grounded on the following principles: 

• Under conditions of elevated power 

demand and diminished SOC, the fuel 

cell delivers the required power to 

sustain vehicle operation. 

• When power requirements diminish 

and SOC levels rise, the battery 

becomes the primary source for 

meeting the vehicle's energy demands. 

This rule-based fuzzy logic approach 

offers robustness and adaptability to 

varying driving conditions, ensuring 

smooth power transitions and efficient 

energy utilization. Through expert-driven 

fuzzy logic rules and membership 

functions, the controller achieves efficient 

load-sharing, minimizes fuel cell 

degradation, and extends the hybrid 

system's operational lifespan. 

 

 

  

Figure 6:  Input and output membership functions and fuzzy level for FCHEV 
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Table 3: Rules based on fuzzy controllers 

6. Optimizing energy management strategy 

with genetic algorithm 

 The fuzzy controller is optimized using a 

Genetic Algorithm (GA) to enhance 

performance. The GA adjusts the membership 

functions and fuzzy rules through selection, 

crossover, and mutation processes, conducting 

an extensive search across the parameter space 

to determine optimal values. As shown in 

Figure 7, the fuzzy logic EMS is optimized via 

a genetic algorithm that calculates fuel 

consumption and estimates fuel cell and 

battery longevity under the target driving 

conditions. A cost function is defined and 

executed at each iteration to achieve effective 

optimization, updating the fuzzy controller’s 

parameters to minimize this cost[27]. 

The optimization leads to improved energy 

management, increased efficiency, reduced 

operational costs, and extended durability of 

the fuel cell system. 

 

Figure 7: Schematic of fuzzy logic optimization 

using GA algorithms 

 The optimization of the fuzzy controller in 

this study pursues two key objectives: 

1. Fuel Consumption 

Reduction: Minimizing hydrogen 

consumption in the fuel cell enhances 

efficiency and reduces operational 

costs. 

2. Extension of Battery and System 

Lifespan: Implementing intelligent 

energy management strategies to 

reduce operational stress on critical 

components, including the fuel cells 

and batteries, increases system 

durability. 

To ensure the simultaneous fulfillment of these 

critical requirements, the objective function is 

defined as follows: 

 minJ = wh2
MH2

+ wfcRSOH + wbatBSOH      (17)                   

The term BSOH  represents the battery 

degradation, where MH2
 denotes the hydrogen 

consumption rate and RSOH indicates the cost 

of fuel cell degradation due to the collapse of 

the ECSA, assuming a 75% loss at the end-of-

life of the fuel cell stack. Additionally, wh2
, 

wfc, and wbat represent the weights of the 

hydrogen consumption rate, the cost of fuel 

cell and battery degradation, respectively. The 

objective function simultaneously reduces fuel 

consumption and increases system lifespan, 

prioritizing battery SOC as a critical 

constraint. This enables the controller to 

optimize performance and durability via 

adaptive, constraint-focused strategies. The GA 

optimization required approximately 28s per 

tuning run on an 8-core workstation; deployments 

use only the tuned rule base, so online control 

remains lightweight. 

6.1. Constraints 

 The battery's SOC must be rigorously 

constrained during energy management 

optimization to prevent deep discharge and 

overcharging, which degrade battery health 

𝑃 req   

PLL 

 

PL 

 

PM 

 

PH 

 

PHH SOC 

L L3 L4 L5 L6 L6 

ML L2 L3 L4 L5 L6 

M L1 L2 L3 L4 L5 

MH L0 L1 L2 L3 L4 

H L0 L0 L1 L2 L3 
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and reduce overall system performance. 

Optimal system performance requires 

maintaining the battery's state of charge within 

a specified operational window as follows: 

𝑆𝑂𝐶𝑚𝑖𝑛 < 𝑆𝑂𝐶(𝑡) < 𝑆𝑂𝐶𝑚𝑎𝑥                         (18 ( 

To safeguard battery health, 𝑆𝑂𝐶𝑚𝑖𝑛 is fixed at 0.4 

to prevent excessive discharge, and 𝑆𝑂𝐶𝑚𝑎𝑥 is 

restricted to 0.8 to minimize electrochemical strain 

and degradation. Additionally, to prevent 

sudden fluctuations and reduce battery stress, 

the rate of change of SOC must be controlled: 

∆𝑆𝑂𝐶𝑚𝑎𝑥 ≥ |
𝑆𝑂𝐶𝑘+1−𝑆𝑂𝐶𝑘

𝑑𝑡
|                               (19) 

This constraint guarantees that variations in the 

SOC happen smoothly and are controlled, 

minimizing stress on the battery. Figures 8 and 

9 below illustrate the outcomes of the genetic 

algorithm optimization applied to the fuzzy 

controller, evaluated across the UDDS and 

Tehran driving cycles.  

The GA optimization was carried out offline 

during the design phase to determine the 

optimal fuzzy rule parameters. Although the 

optimization process is computationally 

demanding, it is executed only once prior to 

implementation. During dynamic simulation, 

the optimized FLC operated smoothly and 

stably without noticeable computational lag, 

confirming the practicality of the proposed 

GA–FLC framework for future embedded 

applications. 

6.2. Robustness Verification under Noisy 

Driving Conditions 

To further evaluate robustness, a modified 

driving cycle was generated by introducing 

slight slope variations and stochastic noise into 

the vehicle power-demand profile. The 

optimized GA–FLC controller maintained 

stable operation and consistent convergence 

behavior under these fluctuating conditions, 

confirming reliable optimization performance. 

Although the GA parameters (population = 40, 

generations = 20) were kept fixed, five 

independent runs using different random seeds 

showed less than 4% variation in the final 

fitness value and maintained at least five 

distinct fuzzy rule sets at convergence. This 

demonstrates that the controller exhibits stable 

convergence, adequate population diversity, 

and resilience against noisy driving scenarios. 

7. Results 

 Simulations of the fuel cell hybrid vehicle's 

dynamic behavior under UDDS and Tehran 

driving cycles were conducted to validate the 

GA-optimized energy management strategy, 

specifically examining its influence on fuel 

cell power output and battery SOC to prolong 

component durability. 

As illustrated in Figure 10, GA-based 

optimization significantly reduces power 

fluctuations in the fuel cell, resulting in 

smoother and more stable operation. In 

contrast, the non-optimized system exhibits 

rapid and pronounced power variations, 

increasing electrochemical and thermal 

stresses. A more uniform load distribution 

achieved through optimization is essential for 

enhancing fuel cell durability. Similarly, 

Figure 11 demonstrates that the GA-optimized 

strategy maintains a higher battery SOC with 

more controlled discharge behavior. 

Minimizing deep discharges and improving 

SOC recovery, the battery experiences reduced 

degradation, improving overall system 

stability. 

Figure 12 further reveals that although the 

optimized system experiences more frequent 

power fluctuations during the initial phases of 

operation, the amplitude of these fluctuations 

is significantly lower, leading to smoother 
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transitions. Conversely, the non-optimized 

system undergoes sharp and abrupt power 

changes, particularly during the early and mid 

stages of the cycle, imposing severe 

electrochemical, thermal, and mechanical 

stresses on the fuel cell. 

These stresses accelerate structural 

degradation. In contrast, the optimized system 

achieves a more gradual and consistent power 

output profile, promoting enhanced stability. 

In Figure 13, the battery SOC rises, indicating 

energy input from the fuel cell or regenerative 

braking mechanisms. After reaching a peak of 

approximately 0.76, the SOC gradually 

decreases as the battery delivers energy. The 

SOC returns close to its initial value, by the 

end of the driving cycle, evidencing effective 

energy management and balanced charge 

maintenance. 

The results from the Tehran driving cycle 

highlight that GA-based optimization can 

significantly mitigate damaging stresses and 

improve the durability of key vehicle 

components by achieving smoother fuel cell 

loading and optimized battery SOC 

management. Critically, enhancing fuel cell 

lifespan depends on minimizing the frequency 

of load fluctuations and controlling the 

intensity, amplitude, and slope of load 

variations throughout vehicle operation. 

  

Figure 8:   Schematic of fuzzy logic optimization using GA algorithms UDDS drive cycle 

   

Figure 9:   Schematic of fuzzy logic optimization using GA algorithms TEHRAN drive cycle 
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Figure 10: Fuel cell power (UDDS drive cycle)  

 

 

Figure 11: battery state of charge (UDDS drive 

cycle) 

 

 

Figure 12: Fuel cell power (TEHRAN drive cycle) 

 

 

Figure 13: battery state of charge (TEHRAN 

drive cycle) 

 

Simulation results under various driving 

cycles, including UDDS and Tehran, 

demonstrated the superiority of the optimized 

approach compared to baseline strategies. 

According to the data presented in Table 4, 

employing a GA for optimizing the fuzzy 

controller significantly reduced fluctuations in 

the fuel cell output power—one of the main 

contributors to the accelerated degradation of 

this costly component. This reduction directly 

translated into an extended estimated system 

lifespan, with improvements of approximately 

50.6% and 12.9% observed under the Tehran 

and UDDS driving cycles, respectively. 

Furthermore, a detailed battery aging analysis 

revealed that the optimized strategy 

substantially decreased the lithium-ion battery 

capacity fade rate, ensuring its long-term 

health. Overall, GA-based optimization 

increased the system's longevity, reduced 

battery degradation, enhanced the state of 

charge stability, and improved overall energy 

management efficiency. In the proposed 

control strategy, regenerative braking was also 

considered during the simulation. The 

recovered braking energy was fully routed to 

the Li-ion battery through the energy 

management controller, enabling partial 

recovery of kinetic energy that would 

otherwise be dissipated as heat. Consequently, 

hydrogen consumption decreased by 
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approximately 7.8%, while the battery 

experienced a modest 3.4% increase in 

charge–discharge cycling depth. This 

represents a trade-off between enhanced 

overall energy efficiency and slightly higher 

battery utilization under regenerative-braking 

conditions. The same degradation model can 

be readily re-parameterized for other battery 

chemistries—such as LFP or NMC—by 

adjusting the activation-energy and depth-of-

discharge exponents, ensuring that the 

proposed GA-FLC strategy remains applicable 

across diverse hybrid configurations. As 

shown in Table 4, the equivalent fuel needed 

to restore the final SOC to its initial level in the 

non-optimized case is roughly equal to the 

optimized fuel use for reaching the same 

charge state. The equivalent fuel is estimated 

by converting the net battery energy difference 

(between final and initial SOC) into an equal 

amount of hydrogen, using the fuel cell’s 

average efficiency and hydrogen’s lower 

heating value. This highlights the importance 

of balancing fuel use and battery performance 

to improve efficiency and extend fuel cell life. 

Table 4: Optimized and non-optimized results 

under driving cycles 

  

Result 

TEH 

None-opt       GA 

UDDS 

    None-opt       GA          

Hydrogen 

Consumption 

(g/100km)  

   779.37         937.21           745.68     782.24      

Lifetime(h)  1412           2127              1943        2195        

Capacity loss 

Battery (%) 

      0.009        0.0081    0.0081      0.0077 

SOCint      0.7            0.7               0.7           0.7          

SOCfinal     0.634         0.7             0.685        0.7         

Hydrogen 

Equivalent 

Consumption 

(g/100km) 

  971.32       937.21          794.41     782.24      

8. Conclusions 

 This research aimed to address the critical 

challenge of enhancing the durability of fuel 

cells and batteries in FCHEVs under realistic 

operating conditions. A significant step was 

taken by presenting a comprehensive 

framework that included detailed dynamic 

modeling of the vehicle, analysis of the 

degradation mechanisms of key components 

(specifically platinum dissolution in PEMFCs 

and the impact of SOC, current rate, and 

temperature on Lithium-ion battery aging), and 

optimization of the energy management 

strategy—implementing degradation models 

based on physical principles and experimental 

data allowed for accurate assessment of the 

state of health and prediction of the lifespan of 

these components. 

The developed fuzzy logic controller-based 

energy management strategy, optimized using 

a Genetic Algorithm, demonstrated high 

reliability in allocating power between the fuel 

cell and battery across diverse driving cycles, 

including the standard UDDS cycle and the 

realistic Tehran traffic cycle. Simulation 

results proved the effectiveness of the 

optimized approach in reducing fuel cell power 

fluctuations, a significant factor in accelerating 

its degradation. Furthermore, this strategy led 

to a considerable improvement in the estimated 

lifespan of the overall hybrid system; we 

observed an approximate increase of 50.6% 

and 12.9% in lifespan for the Tehran and 

UDDS cycles, respectively, compared to the 

baseline strategy. The notable reduction in the 

Lithium-ion battery capacity fade rate per 

cycle traversal (e.g., a decrease from 0.009% 

to 0.0081% for the Tehran cycle) highlights 

another advantage of this method in preserving 
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battery health and postponing its end-of-life 

point. In addition to improved durability, the 

optimized strategy reduced equivalent fuel 

consumption while maintaining the battery's 

state of charge within the optimal operating 

range, indicating higher efficiency of the 

energy management system.  In conclusion, 

this study showed that integrating accurate 

component degradation models with advanced 

energy management optimization offers a 

powerful approach to designing FCHEVs with 

higher durability and efficiency. The findings 

of this research contribute to a better 

understanding of degradation dynamics under 

real-world driving conditions and provide 

practical solutions for extending the lifespan 

and reducing the operational costs of FCHEVs, 

thereby paving the way for broader adoption of 

these clean and sustainable vehicles in the 

future. Future work will focus on 

implementing the GA–FLC controller in a 

hardware-in-the-loop (HIL) setup using 

Speedgoat and real PEMFC–battery modules. 

This experiment will enable evaluation of real-

time adaptability under stochastic thermal and 

traffic variations. The proposed GA-FLC 

strategy achieved simultaneous improvements 

in durability and efficiency under standardized 

and real-world cycles. Future research will 

incorporate adaptive scheduling of 

membership functions based on temperature 

and traffic variability, along with probabilistic 

validation over diverse urban driving datasets, 

to reinforce robustness and real-time 

applicability. 

List of symbols (Optional) 

 

Ic̅ Avrage current rate 

Ea Activation energy 

EGt  Gibbs-Thomson energy (J/mol) 

𝐸𝑟𝑒𝑣  reversible voltage (V) 

𝐹 Faraday constant (c/mol) 

Ic̅ Avrage current rate 

𝑖 current density (A/ cm²) 

iloss  decrease in crossover current density 

(A/𝑐𝑚2) 

iloss,o intital loss current density (A/ cm²) 

iloss,1 decay rate of loss current density(1/h) 

io,a Exchange current density at the anode 

(A/ cm²) 

io,c Exchange current density at the cathode 

(A/ cm²) 

𝑘  direct reaction constant (mol/𝑚2. 𝑠) 

Mpt  molar mass (kg/mol) 

𝑚𝑡  concentration loss (V) 

𝑚0 Initial parameter of 𝑚𝑡 (V) 

𝑚1 Aging parameter of 𝑚𝑡 (1/h) 

𝑛𝑡 concentration loss (cm²/A) 

𝑛0 Initial parameter of 𝑛𝑡 (cm²/A) 

𝑛1 Aging parameter of 𝑛𝑡 (1/h) 

𝑃𝑡𝑂 platinum oxide 

Qloss Normalized capacity loss (%) 

Qbat battery capacity (Ah) 

𝑅 gas constant (J/K.kg) 

𝑅 ohmic resistance (ohm.cm²) 

R 0  initial resistance (ohm/ cm²) 

R 1  growth rate of resistance (1/h) 

rpt  radius of platinum (m) 
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𝑇, θ Temperature (K) 

iloss  decrease in crossover current density 

(A/𝑐𝑚2) 

𝑅𝑜ℎ𝑚 ohmic resistance (ohm. 𝑐𝑚2) 

𝑚𝑡 concentration loss (V) 

𝑛𝑡 concentration loss (𝑐𝑚2/𝐴) 

𝑉 Voltage (V) 

Vocv open circuit voltage (V) 

Vpto decrease platinum voltage (V)   

Vpto,1 Aging parameter of Vpto (1/h) 

Vpto,o Initial parameter of Vpto (V) 

𝑧 Power low exponent 

Greek symbols  

α, β Model parameters 

α𝑘 reaction transfer coefficient (-) 

β transfer coefficients (-) 

∆Gs free energy of platinum extraction (J) 

∆Gelec  free energy of oxidation (J) 

∆Gdes free energy of desorption (J) 

∆𝑆𝑂𝐶 Rate of change of state of charge 

∆χ local potential (V) 

γpt surface energy of platinum (J/𝑚2) 

ρpt density (kg/𝑚3) 

σfunc Severity factor function 

𝑣𝑑𝑖𝑠𝑠  kinetic dissolution rate of platinum (m/s) 
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