Volume 7, Issue 2 (6-2017)                   IJAE 2017, 7(2): 2423-2433 | Back to browse issues page

XML Print

Abstract:   (1049 Views)
Heat transfer in internal combustion engines is one of the most significant topics. Heat transfer may take place through thermal conduction and thermal convection in spark ignition engines. In this study, valve cover heat transfer and thermal balance of an air-cooled engine are investigated experimentally. The thermal balance analysis is a useful method to determine energy distribution and efficiency of internal combustion engines. In order to carry out experiments, a single cylinder, air-cooled, four-stroke gasoline engine is applied. The engine is installed on proper chassis and equipped with measuring instruments. Temperature of different points of valve cover and exhaust gases is measured with the assistance of K-type thermocouples. These experiments are conducted in various engine speeds. Regarding to the first law of thermodynamics, thermal balance is investigated and it is specified that about one-third of total fuel energy will be converted to effective power. It is also evaluated that for increasing brake power, fuel consumption will increase and it is impossible to prevent upward trends of wasted energies. In addition, it is resulted that, there is a reduction heat transfer to brake power ratio by increasing engine speed. Furthermore, it is found that, at higher engine speed, lower percentage of energy in form of heat transfer will be lost.
Full-Text [PDF 647 kb]   (281 Downloads)    
Type of Study: Research | Subject: General
Received: 2017/10/3 | Accepted: 2017/10/3 | Published: 2017/10/3