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1. INTRODUCTION

The vehicle-bridge dynamic interaction has been

centre of interests for last few decades. The interests

arises by increasing the demand of using high-speed

and heavy vehicles, which essentially lead to focused

attention on the need for a better understanding of the

dynamics of vehicle-bridge coupled systems. Basics

and fundamentals of the dynamic analysis of different

types of beams subjected to moving vehicles have

been comprehensively addresses in two books

provided by Fryba [1] and by Yang et al. [2].  The

simplest approach to model a vehicle is to assume that

the forces, due to the wheel-bridge interaction are

constant; in other words, the beam is subjected to two

moving constant loads. Although this approach

considers the effects of two loads with the fixed

distant on the beam, but it ignores the vehicle inertia

and the vehicle-beam interaction, as well. Wen in 1960

improved that approach by considering the vehicle as

a sprung mass with two axles. He investigated the

typical uniform beam dynamic response while

subjecting to the moving sprung mass. In fact, by

considering the vehicle as a sprung mass with two

axles, the effects of vehicle inertia and vehicle-beam

interaction are considered along with the effects of the

moving loads [1]. Fryba [1] improved Wen’s model

and formulated the differential equations of motion of

a typical beam traversed by sprung masses with one,

two and multi axles using d’Alembert’s principle. The

results for all three cases were compared and the

effects of a number of axles were investigated. More

realistic dynamic condensation procedures proposed

by Yang and Yau [3], which combine the separate

vehicle and bridge models into a single coupled

system in which all the original degrees of freedom are

merged. Other methods, such as the mode

superposition technique, have also been applied [4, 5]

to study the dynamic response of multi-span beams

subjected to moving loads. Esmailzadeh and Jalili [6]

increased the vehicle degrees of freedom and

considered the dynamics of the driver and passenger

masses as well as their seats suspension systems. The

presented vehicle model was a half-car planner model

travelling along a simply supported Euler-Bernoulli

beam. The beam dynamic response and the vehicle

components bounce (tires, body, passenger, and

driver) were observed. A nonlinear vehicle-bridge

interaction model was developed by Kargarnovin et al.

[7] to analyze the ride comfort quality of the high-

speed trains travelling on the railway bridges.

Surveying the literature shows that there are very few

number of publications on the dynamics analysis of

curved beams interacting with moving vehicles.

Dynamic analysis of simply supported curved beams

subjected to a single moving force has been carried out

using the Galerkin's approach by Yang et al. [2]. Out-

of-plane vibration of multi-span curved beams

subjected to moving loads was analytically analyzed

using the mode summation approach by Wang and

Sang [8]. An accurate and effective solution for a

circular curved beam subjected to a moving load was
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proposed by Haung et al. [9] using the Laplace

transform technique. The radial (in-plane) and out-

plane bending-vibration responses of a uniform

circular arch under the action of a moving load were

investigated by Wu and Chiang [10-11] by means of

the arch (curved beam) elements. Dynamic response

of a slightly curved bridge under the action of a

moving mass was studied by Reis and Pala [12] using

an analytical approach. It is found that the dynamic

interaction between a moving vehicle and a curved

beam is still an open problem in the literature and

needs to be further investigated. In this article, the

vehicle-bridge interaction in extended for vehicles

traveling on the curved bridges. The combinational

problem is formulated by the Finite Element Method.

In order to validate the result, a typical beam and

vehicle properties are selected from the literature. The

results are compared with the selected work, and it is

shown that the presented results are in good agreement

with those in the literature. Finally, a typical vehicle

with 6 DOF is employed to simulate the moving

vehicle on the curved beam. A parametric study is then

carried out and effects of different parameters on the

vehicle responses and bridge defections are

investigated. 

2. MATHEMATICALMODELINGAND VALIDATION

The major difference between curved beam and

straight beam, which makes the study of the curved

beams more complicated, is that the structural

deformations in a curved beam depend on not only the

rotation and radial displacement, but also the coupled

tangential displacement caused by the curvature of

structures. 

The aim of this section is to develop the governing

equation of the curved beam, as illustrated in Figure 1,

with considering the effects of the shear deformation

and rotary inertia. As discussed earlier the axial

extensibility plays a major role in modeling the curved

beam, hence, the effects of it will be included in the

following formulations. Doing so, the extended

Hamilton theory principal is applied to derive the

governing differential equations of motion:

(1)

where the kinetic energy (T) and the potential

energy (V) can be expressed as:

(2-a)

(2-b)

where

E Young’s elastic modulus 

G shear modulus 

k Timoshenko’s shear coefficient 

mass per unit length 

I(x) area moment of inertia

J(x) second moment of inertia 

A(s) cross-sectional area

w beam radial transverse response

u tangential displacement

rotation due to shear deformation

rotation due to bending

As it is provided in the equations, the axial

extensibility is considered in the

formulations. It should be noted that since

there is no external force acting on the beam.

By substituting the geometrical relationships into

Equations (2), and applying the extended Hamilton’s

principle, the following three governing differential

equations of motion can be obtained:

(duT(s)/ds) 

ds
s
tsusEA

L
T� �

�
�

�
�
�

�
�

	
2),()(

2
1

dstssGAkds
s
tssEIV

LL �� 		�
�
�

�
�
�

�
�


 2
2

),()(
2
1),()(

2
1 
�

ds
t
tsusA

L� �
�
�

�
�
�

�
�

	
2),()(

2
1 �

ds
t
tssJds

t
tswsAT

LL �� 	�
�
�

�
�
�

�
�

	�
�
�

�
�
�

�
�



22 ),()(

2
1),()(

2
1 ��

Y

x

�

)(su
)(sw

)(s�

Fig. 1. Schematic diagram of curved beam with the defined

coordinates
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where R indicates the beam curvature radius. 

The geometrical properties of any circular curved

beam can be defined by three parameters, namely,

beam span length (L) beam curvature angle  ( ) beam

curvature radius (R) which they are related to each

other by the equation below:

(4)

Based on the equation, one should identify at least

two of these parameters in order to define a circular

curved beam. For the present study, the beam span

length is considered to be constant and the beam

curvature to be variable. Therefore, the other

parameter, beam curvature radius, will be calculated

based on the input values for the span length

(L)curvature angle ( ) Figure 2 illustrates the relation

between the three parameters by showing two

different circular curved beams with the same span

length and different curvature angle and radius.

The corresponding vector of the generalized

coordinates is then given by

(5)

in which, N denotes the number of total nodes. The

consequent mass matrix and stiffness matrix are then

obtained as [14]

(6)

(7)
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(13)

(14)

(15)

where, . The following governing

equation of motions in the FE form can be then

obtained:

(16)

As illustrated in Figure 2 two different circular

curved beams are drawn, S and S’, between two points

of A and B. Both share the same span length, but

different curvature angle and radius. It can be seen that

increasing the curvature angle makes the radius to

decrease; however, the length of the curve will be

increased (S > S’). 

As discussed before, for this study the length is kept

constant, curvature angle is given, and the radius will

be calculated. Timoshenko beam elements are

employed to include the effects of shear deformation

and rotary inertia. In order to generate the elastic

circular curved beam, 100 straight Timoshenko beam

segments are utilized, as described in Figure 3.

In order to validate the beam model, has a typical

uniform circular curved beam is selected with the

geometrical and physical properties listed in Table 1.

where r is the radius of gyration and is equal to

The first ten natural frequencies of the uniform

circular curved beam with the hinged-hinged

boundary condition are obtained by the FEA. The

natural frequencies are converted to non-dimensional

form in order to compare the generated results with

those available in the literature [13-14] as provided in

Table 2. It can be realized that very close agreement

between the presented results and those reported in the

literature.

.
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Fig. 2. The relation between circular curved beam

parameters

Fig. 3. Curved beam modeling in FEM

Elastic modulus (E) 70 GPa 

Shear modulus (G) 24.7 GPa 

Density ( ) 2777 kg/m3

Cross-section area ( ) 4 m2

Second moment of area ( ) 0.01 m4

Shear coefficient ( ) 5/6 

Beam curvature radius ( ) 0.75 m 

Beam curvature angle ( ) 90o

R / r 15 

l / r 23.56 

Table 1. Properties of the curved beam [13]
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3. NUMERICAL RESULTS AND DISCUSSION 

The aim of this section is to create a moving half-

car model on the curved Timoshenko beam, showed in

Figure 4. The curved beam is modeled using a

sequence of straight beam elements, which has been

proven to be acceptable in the literature.

A proper input table is utilized to constraint the

vehicle movement along the beam as xb= t in order

to ensure the velocity of the vehicle along the beam

would remains constant, where is the vehicle

constant speed and t is time with the origin of the

moment when the first wheel arrives on the beam. 

As an especial case, the straight beams act as the

curved beams with an infinite curvature radius. The

aim of this section is to generate a moving half-car

planner model on a straight  Timoshenko beam. The

selected vehicle model is half-car planner model with

six degrees of freedom, illustrated in Figure 5.

A typical Timoshenko beam and half-vehicle

planner model are selected from literature to validate

the presented method and modeling. Esmailzadeh and

Jalili [6] presented the analytical solution for a thin

beam traversed by a moving vehicle. Table 3 provides

the beam properties. As mentioned in the introduction,

Esmailzadeh and Jalili investigated the problem of

Euler-Bernoulli beam traversed by a moving vehicle;

however, the Timoshenko beam theory is employed in

this study. Therefore, to ensure the validity of the

generated results by present finite element method, all

Timoshenko elements in the model are substituted

with Euler-Bernoulli beam elements for this section.

The geometrical and mechanical of the vehicle

model presented by Esmailzadeh and Jalili. [6] which

F. Javid, E. Esmailzadeh and D. Younesian
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Fig. 4. Timoshenko curved beam traversed by moving

vehicle [15] 
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Fig. 5. The moving vehicle on a suspension bridge. Beam

force interaction with a six DOF half-car planner model

[6].

Mode Ref. [13] Ref. [14] Present Study 

1 29.61 29.280 29.2627 

2 33.01 33.305 33.2983 

3 67.24 67.124 67.0724 

4 79.6 79.971 79.9582 

5 107.7 107.851 107.7653 

6 144.5 14 .618 143.5 35 

7 155.2 156.666 156.6343 

8 191.3 190.477 190.3772 

9 223.7 225.361 225.4156 

10 235.3 234.524 234.4843 

Table 2.  Non-dimensional frequencies 

of the curved beam with hinged-hinged boundary condition
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is a six DOF half-car planner model, as illustrated in

Figure 4, are listed in Table 4. 

Figure 6 presents the history diagrams of the driver

vertical motion (bounce), the passenger, the vehicle

body, the front tire and the rear tire bounce for the

vehicle speed of =88km/h(24.44 m/s). The figure

also compares the generated result using the presented

method with those obtained by Esmailzadeh and Jalili

[6].

As it is presented in Figure 5, the obtained results

are in good agreement with those obtained with

Esmailzadeh and Jalili [6]. The major difference

between two result sets occurs when the vehicle

passes the beam midpoint and the sheer force changes

rapidly from the positive maximum to its negative

minimum. The rapid change in the sheer force cannot

be captured by all the elements of the beam; therefore,

the slight difference between the generated results and

those obtained by Esmailzadeh and Jalili [6] is

observed.

It is shown that the maximum deflection (bounce)

of the vehicle components do not occur when the

vehicle passes the midpoint. The reason is that the

beam maximum deflection does not occur when the

An Investigation Into the Vehicle-Curved Bridge Dynamic Interaction

Elastic modulus 207 GPa

Mass per unit length 20 000 kg/m

Cross-sectional area 4.94 m2

Second moment of area 0.174 m4

Beam viscous damping 1750 N.s/m

Beam length 100 m

Table 3. Properties of the beam [6]

Body mass ( ) 1794.4 kg 

Body rotational mass moment of inertia ( ) 443.05 kg.m2

Front axle mass ( ) 87.15 kg

Rear axle mass ( ) 140.4 kg

Driver mass ( ) 75 kg

Passenger mass ( ) 75 kg

Front axle damping ratio ( ) 1 190 N.s/m

Rear axle damping ratio ( ) 1 000 N.s/m

Front tire damping ratio ( ) 14.6 N.s/m

Rear tire damping ratio ( ) 14.6 N.s/m

Driver seat damping ratio ( ) 62.1 N.s/m

Passenger seat damping ration ( ) 62.1 N.s/m

Front axle stiffness ( ) 66 824.4 N/m 

Rear axle stiffness ( ) 18 615.0 N/m 

Front tire stiffness ( ) 101 115.0 N/m

Rear tire stiffness ( ) 101 115.0 N/m

Driver seat stiffness ( ) 14 000.0 N/m 

Passenger seat stiffness ( ) 14 000.0 N/m 

Distance form front wheel to body C.G.( ) 1.271 m 

Distance form rear wheel to body C.G.( ) 1.716 m 

Distance form driver seat to body C.G.( ) 0.481 m 

Distance form driver seat to body C.G.( ) 1.313 m 

Table 4. Mechanical properties of the vehicle [6]

Fig. 6(a). Time history diagram of the driver seat

Fig. 6(b). Time history diagram of the passenger seat 
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vehicle locates on the mid-span. It should be

mentioned that the beam deflection magnitude is

relatively larger than those for the vehicle

components.

To study the effects of the bridge curvature on the

vehicle dynamics, the same bridge and vehicle model

are employed, but the curvature is added to the bridge,

as presented in Table 5. The geometrical and

mechanical of the selected vehicle model are listed in

Table 4 and the vehicle speed is assumed to be 10 m/s.

Figure 7 illustrates the history diagram of the driver

vertical motion (bounce), the passenger, the vehicle

body, the front tire and the rear tire bounce. To

understand the vehicle dynamics, the deflection of the

vehicle components, i.e. vehicle body, tires, and seats,

are studied in two different approaches. Doing so, two

functions are defined, namely absolute and relative as

presented below:

(5)

where yc(t) is the deflection of the component and

w( t,t) is the beam deflection at the location of the

vehicle.

It should be noted that the vehicle leaves the bridge

after 5 sec, though it continues the movement after the

bridge to achieve better understanding of its dynamics.

As it is illustrated in Figure 7, there are some

similarities in all the presented graphs such as: The

absolute function and relative function match together

F. Javid, E. Esmailzadeh and D. Younesian

Elastic modulus 207 GPa

Mass per unit length 20 000 kg/m

Cross-sectional area 4.94 m2

Second moment of area 0.174 m4

Beam viscous damping 1750 N.s/m

Shear coefficient 5/6 

Beam length 100 m 

Beam curvature angle 60o

Table 5. Properties of Timoshenko beam with curvature

angle [15]

Fig. 6(c). Time history diagram of the vehicle body

Fig. 6(d). Time history diagram of the front tire

Fig. 6(e). Time history diagram of the rear tire

Fig. 6. Time history diagram of the driver , the passenger,

the vehicle body, the front tire and the rear tire bounce for

the vehicle speed of =88km/h(24.44 m/s).
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when the vehicle leaves the beam; however, there are

significant differences between them when the vehicle

is on the beam. The relative deflections of all the

vehicle components have two stages: while the vehicle

is on the beam, when the vehicle leaves the beam. In

the first stage, the vehicle components face the rapid

changes of the base altitude due to the curved beam

geometry, which makes them to oscillate. However,

the oscillations decrease because of the dampers.

4. CONCLUSION

The vehicle-structure interaction problem of a

curved bridge traversed by a moving vehicle was

investigated. The vehicle including the occupants was

modelled as a half-car planar model with six degrees-

of-freedom, and the bridge was assumed as a

Timoshenko beam. Comparing the time history

diagram of the moving vehicle on the straight bridge

with those obtained on the curved bridge. It was found

that the front passenger feels larger relative and

absolute accelerations in case of the curved bridge.

An Investigation Into the Vehicle-Curved Bridge Dynamic Interaction

Fig. 7(a). Time history diagram of the driver

Fig. 7(b). Time history diagram of the passenger

Fig. 7(d). Time history diagram of the front tire

Fig. 7(e). Time history diagram of the rear tire

Fig. 7. Time history diagram of (a) the driver , (b) the

passenger, (c) the vehicle body, (d) the front tire and (e) the

rear tire bounce for the vehicle speed of

=88km/h(24.44 m/s).

Fig. 7(c). Time history diagram of the vehicle body
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While the order of magnitude of acceleration remains

unchanged for rear and front passengers in case of the

straight bridge.   It was also observed that the

passenger's displacement almost follow the bridge

deflection pattern in case of the straight bridges.  But

a significant difference between these two values was

observed when the vehicle is travelling on the curved

bridge. 
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